Surface coatings for 3-piece freight bogie centre bearings

Matthew J. Franklin
University of Wollongong

This paper is posted at Research Online.
NOTE
This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING
You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Appendix A: Method used to calculate the centre bearing rim wall elastic contact length, average and maximum contact pressures

The centre bearing rim wall elastic contact length, average and maximum contact pressures are calculated according to Hertzian elastic contact equations for a cylinder-in-circular groove [107].

Given the total load on rim wall, $N_{rim\ wall}$, and the rim wall contact height, $H_{rim\ wall}$, the load (N) per mm of rim wall contact height, $p_{rim\ wall}$, is calculated:

$$p_{rim\ wall} = \frac{N_{rim\ wall}}{H_{rim\ wall}}$$ \hspace{1cm} (27)

Given the Poisson's ratio of the top centre and centre bowl liner, v_{tc} and v_{cbl}, respectively, and the elastic modulus of the top centre and centre bowl liner, E_{tc} and E_{cbl}, respectively, the reduced elastic modulus, E_r, can be calculated:

$$E_r = \left\{ \left[(1-v_{tc}^2)/E_{tc} \right] + \left[(1-v_{cbl}^2)/E_{cbl} \right] \right\}^{-1}$$ \hspace{1cm} (28)

The elastic contact length, b, can be calculated:

$$b = 1.6 \times \sqrt{\left[p \times D_{cbl} \times D_{tc} \right]/\left[E_r \times (D_{cbl} - D_{tc}) \right]}$$ \hspace{1cm} (29)

where D_{cbl}= centre bowl liner diameter, and D_{tc}= top centre diameter (NB: $D_{cbl} > D_{tc}$)

The apparent contact area, A, can be calculated:

$$A = H_{rim\ wall} \times b$$ \hspace{1cm} (30)

The average contact pressure, p_{ave}, can be calculated:
The maximum contact pressure, p_{max}, can be calculated:

$$p_{\text{max}} = \frac{3/2 \cdot N_{\text{rim \ wall}}}{(\pi \cdot H_{\text{rim \ wall}}/2 \cdot b/2)}$$

Equation 32 simplifies to:

$$p_{\text{max}} = \frac{6 \cdot N_{\text{rim \ wall}}}{(\pi \cdot H_{\text{rim \ wall}} \cdot b)}$$
Appendix B: Flat-on-flat friction and wear test results of alternative centre bearing materials [from 103].

Friction and wear test conditions

- Reciprocating flat-on-flat (8 mm diameter pin face).
- Load = 201 N.
- Average contact pressure = 4 MPa.
- Average sliding speed = 40 mm/s.
- Sliding distance = 475 m and 950 m.

Materials

DP4 – Steel backing plate + porous bronze sinter + PTFE + calcium fluorite + fillers
DU-B – Bronze backing plate + porous bronze sinter + PTFE + lead
DU – Steel backing plate + porous bronze sinter + PTFE + lead
Hilube 10, Hilube 20 - polyethylene liners.
Green, orange (HDPE), and black polyethylene liners.

Please see print copy for Figure 147

Figure 147 Hadfield steel pins showing 8 mm diameter flat pin face [from 103].
Figure 148 Co-efficient of friction of various plate materials [from 103].
Figure 149 Calculated volume loss for sliding distance of 475 m and 950 m [adapted from 103].
Figure 150 Calculated normalized or specific wear rate for sliding distance of 475 m and 950 m [adapted from 103].