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CONDITIONAL AND UNCONDITIONAL MODELS IN
MODEL-ASSISTED ESTIMATION OF

FINITE POPULATION TOTALS

David G. Steel and Robert G. Clark
Centre for Statistical and Survey Methodology

University of Wollongong Australia

ABSTRACT

The well known Godambe-Joshi lower bound for the anticipated variance of design
unbiased estimators of population totals treats the auxiliary variables as constants. We
extend the result to models where these variables are randomand show that the generalized
difference estimator using the expected values conditional on all auxiliary values is optimal.
This has several implications including the fact that collecting multiple survey variables
does not reduce the lower bound.

KEY WORDS

Cluster sampling; Generalized regression estimator; Optimal estimation; Probability
sampling

AMS Classification 62D05

1. INTRODUCTION

1.1 Inferential Frameworks for Survey Sampling
This article extends a well known result relating to the bestpossible estimator of a

finite population total according to a particular criteria,the anticipated variance. Consider
a populationU consisting ofN units, where units may be people, households, businesses or
other entities. A samples⊆U is selected fromU using some probability sampling method,
with πi = P[i ∈ s] denoting the probability of selection for uniti ∈U . A variable of interest
Yi is defined for each uniti ∈ U . The aim is to estimateY = ∑i∈U Yi using data onYi for
sampled unitsi ∈ s only. We denote the vector ofYi for i ∈ s by Ys. A vector of auxiliary
variablesXi may also be available and observed for all unitsi ∈U . We writeXU andYU to
denote the collection of all of these variables for all unitsin the population.

For example, the aim may be to measure the total employment for working age adults
in a country. In this case, the unitsi would be people and the populationU would be all
working age adults. The variableYi would be defined to equal 1 if personi is employed
and 0 otherwise. A survey would be administered to determinethe employment status of
all people in a samples. There is often external information on age and sex for all people
in the population, so the elements ofXi would be indicator variables indicating the age and
sex of personi. The objective is to combine information onYi for i ∈ s with XU to give the
best estimator ofY.

c© Pakistan Journal of Statistics 529



530 Conditional and Unconditional Models

A number of frameworks have been used in sample survey theory, including the design-
based, model-based and model-assisted frameworks. In the design-based framework,XU

andYU are regarded as constants, and the only source of randomnessis the selection of
the samples. This framework avoids any explicit modelling ofXU andYU . The “design
expectation” of an estimator is defined to be its expected value over all possible samples,
with XU andYU treated as constants. Estimators ofY are required to be exactly or approx-
imately “design-unbiased”, that is their design expectation (expectation over all possible
samples) must be exactly or approximately equal toY. For a discussion of the design-
based framework, see for example Cochran (1977) and Sarndal, Swensson, and Wretman
(1992, ch.1-2). Design-variances are similarly defined to be the variances over the possible
values ofs, with XU andYU treated as constants.

In the model-based, or prediction framework, a model is postulated forYU conditional
on XU . Estimators are usually evaluated in terms of the expectation conditional onXU

and on the particular samples selected, so that the only sources of randomness are the
population valuesYU . Expectations conditional onsandXU are called model-expectations;
model-variances are defined similarly. Predictors ofY are generally required to be model-
unbiased, in the sense that the model expectation of the estimator minusY should equal
zero, and to have low model variance. For a discussion of the model-based framework, see
for example Brewer (1963), Royall (1970) and Valliant, Dorfman, and Royall (2000).

In the model-assisted approach to estimating a finite population total, both probability
sampling methods and population models have a role (Sarndalet al., 1992, pp.227,238-
239). Boths andYU are regarded as random, with a model of some kind being assumed
for YU . XU are regarded as constants. Estimators are required to be (atleast approximately)
design unbiased, that is unbiased over repeated sampling conditional onYU andXU . Sub-
ject to this constraint, it is desirable to reduce the variance over both repeated sampling
and repeated realisations ofYU based on an assumed model. The most commonly used
estimator in the model-assisted framework is the generalized regression estimator. Most
estimators of population totals used in practice are special cases of the generalized regres-
sion estimator. Sarndal et al. (1992) contains an extensivediscussion of this estimator and
the model-assisted framework.

1.2 Optimal Estimation
The existence of optimal estimators has been investigated for all of these frameworks.

In the design-based framework, an optimal estimator ofY should ideally minimize the
design-variance in the class of all design-unbiased estimators. However, it has been shown
that there is no such estimator (Godambe, 1955). One proof ofthis result (Basu, 1971)
shows that for every population, there is in theory a design-unbiased estimator of a total
which has zero variance for that particular population, butthere is no estimator which has
the lowest variance for all populations. (As noted in (Basu,1971), this result is not usable
in practice because it requires perfect knowledge of the population values, but it neverthe-
less provides a useful benchmark.) The design-based framework is therefore not suitable to
give guidance on best estimators without restricting the range of populations being consid-
ered. This can be done informally, for example ratio estimators have lower design variance
than the simpler number-raised estimator for populations satisfying a simple condition, for
simple random sampling (Cochran, 1977, p.157).
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The non-existence of an optimal design-based estimator ofY was one of the motiva-
tions for the development of the model-assisted framework.In this framework, estimators
are still required to be exactly or approximately design-unbiased. Unlike the design-based
framework, however, the aim is to minimize the model expectation of the design variance,
under an assumed model forYU . This quantity, which has been called the anticipated vari-
ance (Isaki & Fuller, 1982), can be minimized for design-unbiased estimators (Godambe
& Joshi, 1965). An estimator with this optimality property would be design-unbiased re-
gardless of the correctness of the population model, and would be optimal in the sense of
minimising the anticipated variance provided the model is true.

Consider the following model forYU :

E [Yi ] = µi

var[Yi ] = σ2
i

Yi ,Yj independent∀i 6= j







(1)

Design-unbiased estimatorsŶ satisfy the inequality

var
[

Ŷ−Y
]

≥ ∑
i∈U

(

π−1
i −1

)

σ2
i (2)

where variance is over both repeated sampling and repeated realisations ofYU (Godambe
& Joshi, 1965). The estimator which meets the lower bound is

Ŷµ = ∑
i∈U

µi +∑
i∈s

π−1
i (Yi −µi) . (3)

The estimator̂Yµ generally cannot be calculated in practice, because the values ofµi and
their sum over the population would be unknown in almost all cases. The usual strategy
in practice is to assume thatµi are known functions ofXU and some unknown parameters.
These parameters can then be estimated from sample data, andestimates ˆµi can then be
used in place ofµi in (3). Estimators formed in this way may have variance whichtends
to the lower bound (2) as the sample size and population size both tend to infinity, given a
correct model for{µi}. For example, the generalized regression estimator has this property
(Sarndal, 1980). Estimators with this property can be called asymptotically optimal.

This paper extends result (2) to the case where the auxiliaryvariablesXU are random
variables, for certain types of designs. Section 2 containsa theorem for this case. The
theorem allows the possibility that multiple survey variables are collected and also allows
a model with dependencies between different values of the survey variable, subject to a
restriction. A difference estimator similar to (3) is shownto be optimal, but withµi replaced
by E [Yi |XU ]. Hence the apparently arbitrary treatment ofXU as constants by Godambe and
Joshi (1965) is reasonable, as the same estimator is optimalunder a more general model.
Section 3 gives four implications of this result and Section4 summarises the conclusions.

2. A THEOREM ON THE AV UNDER AN UNCONDITIONAL MODEL

This section contains a theorem giving a lower bound for the anticipated variance (AV)
of design-unbiased estimators ofY, and an optimal estimator ofY. The theorem allows for
the possibility that other survey variables,Zi , are observed fori ∈ s.
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The theorem requires that the sampling scheme is non-informative. A sampling scheme
is said to be non-informative if

p(s) = P[s is selected|YU ,ZU ,XU ] = P[s is selected|XU ] ,

i.e. the sampling process depends only onXU , which is known at the time of design, and
not on the survey variablesYU andZU which are collected during the survey.

The populationXU ,YU ,ZU will be assumed to be generated by a model such that

E [Yi |XU ] = µi = µi (XU)
var[Yi |XU ] = σ2

i = σ2
i (XU)

}

(4)

Note that the expectations in (4) are model-expectations. This model is extremely general
because it allows the means and variances ofYi conditional onXU to be any functions of
XU . In practice,{µi} would be assumed to be known functions ofXU and some unknown
parameters. The unknown parameters would need to be estimated from sample data, so
that the lower bound in the Theorem could not be perfectly achieved in practice.

Theorem 1
Suppose that a variableYi and a number of other variablesZi are observed fori ∈ s. It

is assumed that sampling is non-informative. The population XU ,YU ,ZU is assumed to be
generated by model (4). It is further assumed that(Yi ,Zi) is conditionally independent of
(Yj ,Z j) given XU for all i 6= j such that there is at least one samples∈ S with p(s) > 0
wherei ∈ sand j 6∈ s.

Let Ŷ = Ŷ (s,XU ,Ds) be a design unbiased estimator ofY so that

E
[

Ŷ |XU ,YU ,ZU
]

= Y

whereDs denotes the sample data(Ys,Zs). DefineŶµ by

Ŷµ = ∑
i∈s

π−1
i [Yi −µi (XU)]+ ∑

i∈U
µi (XU) (5)

Then
var
[

Ŷ−Y
]

≥ var
[

Ŷµ−Y
]

. (6)

If Yi andYj are conditionally independent givenXU for all i 6= j, then

var
[

Ŷµ−Y
∣

∣XU
]

= ∑
i∈U

(

π−1
i −1

)

σ2
i (XU) (7)

var
[

Ŷµ−Y
]

= E

[

∑
i∈U

(

π−1
i −1

)

σ2
i (XU)

]

. (8)
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See Appendix for proof. The proof is similar to Godambe and Joshi (1965) except
that the conditioning onXU has been explicitly stated. WithXU a random variable, we
have obtained essentially the same result as Godambe and Joshi (1965), provided that̂Y =
Ŷ (s,XU ,Ds).

The condition regarding independence of(Yi ,Zi) and (Yj ,Z j) allows for these to be
dependent for somei 6= j provided that there is never a dependency between values in
the sample and values not in the sample. This is is a generalization of the condition in
Godambe and Joshi (1965), whereYi was assumed to be independent ofYj for everyi 6= j.
The generalization allows the result to be applied to one-stage cluster sampling where there
are dependencies between(Yi ,Zi) and(Yj ,Z j) for i and j in the same cluster, provided that
observations from different clusters are independent. Theresult does not cover multistage
sampling, because in this case there may be correlations between the values of the sampled
and unsampled units from each primary sampling unit. However, it would cover most other
designs, including stratified single-stage sampling.

There is no requirement in Theorem 1 or in Godambe and Joshi (1965) for the estimator
Ŷ to be linear.

3. IMPLICATIONS OF THE THEOREM

No Value in Modelling XU

The valuesXU may follow some complex model, for example there may be interesting
dependencies between the elements ofXi, or between the elements ofXi and Xj . The
theorem shows that̂Yµ is the optimal estimator regardless of the distribution ofXU . The
values ofE [Yi |XU ] are required to calculatêYµ, and generally modelling ofYi conditional
on XU is needed to estimateE [Yi |XU ]. There is no improvement in the lower bound on
the AV of estimators ofY from considering the marginal distribution. Hence no benefit
from knowing this marginal distribution would be expected,at least for sufficiently large
samples.

It should be noted that the Theorem states a lower bound whichis generally only at-
tained asymptotically. In practice, the model forE [Yi |XU ] must be estimated from sample
data, so that for small samples there could be some benefit from considering the marginal
distribution ofXU .

Multiple Survey Variables
It is clear from Theorem 1 that considering several survey variablesYi andZi together

does not reduce the lower bound for estimates ofY. The same AV can be achieved by
modelling one at a time each variable collected in the survey. The practical implication is
that there is no large sample reduction in the AV if multivariate models for several survey
variables conditional onXU are used. Again, it should be noted that the lower bound is
generally only attained asymptotically, so it is possible that multivariate models could give
some benefit for small samples.

Ŷµ is Still Optimal under Cluster Sampling
In one-stage cluster sampling, a sample of clusters of unitsis selected, and all units

in these clusters are selected. In this case, it would be usual to assume that there may
be dependencies between the values of the survey variables for units in the same cluster,
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but no dependencies across clusters. In this situation, Theorem 1 shows that̂Yµ is still the
optimal estimator. Hence modelling the dependencies within the cluster cannot give any
improvement in estimators ofY, at least for large samples. One practical example of one-
stage cluster sampling might be all people in selected households, where households are
selected by telephone sampling.

In multi-stage sampling, a sample of first stage units (e.g. suburbs) is selected, followed
by a sample of second stage units (e.g. households) from selected first stage units, followed
by a sample of third stage units (e.g. from selected second stage units, and so on. One-
stage cluster sampling is a simple special case of multi-stage sampling, but in practice more
complex multi-stage samples are often used. Theorem 1 wouldnot generally apply in this
case, because there could be correlations between sampled and non-sampled units. In some
multi-stage household surveys, the final stage of selectionconsists of all people in selected
households. In this case, the correlations across households may be negligible compared
to the correlations between people in the same household, sothat Theorem 1 may apply at
least approximately.

Mukerjee and Sengupta (1989) derived the optimallinear model-assisted estimator for
correlated data, which could potentially be applied to multi-stage samples in general.

Auxiliary Data for All Units Should Be Used
The lower bounds in Theorem 1 are achieved by the estimatorŶµ in (5) with

µi = E [Yi |XU ]

which conditions on the values of the auxiliary variables for all units in the population. This
may be different fromE [Yi |Xi ] which is widely used in motivating estimators, for example
the generalized regression estimator (Sarndal, 1980) and the nonlinear estimators of Firth
and Bennett (Firth & Bennett, 1998) and Lehtonen and Veijanen (Lehtonen & Veijanen,
1998). In other words, it is usually assumed that the expectation of Yi conditional onXU

does not depend onXj for j 6= i. This may not be reasonable for populations with natural
clustering or a hierarchical structure (Steel & Welsh, 2006).

Cluster sampling (or stratified cluster sampling) of all people in selected households
may be one case where

E [Yi |XU ] 6= E [Yi |Xi ] .

In some household surveys,XU consists of demographic data. A person’s survey variable
could depend on their own demographic characteristics and those of other household mem-
bers, because the latter could indicate family or living arrangements. Models of this kind
are called contextual models; see for example Kreft and De Leeuw (1998).

Consider a regression estimator based onE [Yi |Xi ],

ŶA = ∑
i∈s

π−1
i (Yi −µ∗i )+ ∑

i∈U
µ∗i

whereµ∗i = E [Yi |Xi ]. This is not the same aŝYµ, becausêYµ usesµi = E [Yi |XU ]. If it
can be assumed that there are no correlations across different households, then Theorem
1 means that the AV of̂YA must be greater than or equal to the AV ofŶµ. To illustrate
the possible loss from usinĝYA instead of the optimal estimator, consider the special case
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when: πi are fixed constants not depending onXU ; Xi are independently and identically
distributed fori ∈U ; {Yi : i ∈U} are independent conditional onXU ; {(Xi ,Yi) : i ∈U} are
identically distributed; the sample size,n, is non-random so thatn = E [n] = ∑

i∈U

πi . It is

further assumed thatσ2
i = var[Yi |XU ] is equal to a constant,Vy|xU, for all i ∈ U , and that

var[Yi |Xi ] is equal to a constantVy|x for all i ∈U . From Theorem 1,

var
[

Ŷµ−Y
]

= E

[

∑
i∈U

(

π−1
i −1

)

σ2
i (XU)

]

= Vy|xU ∑
i∈U

(

π−1
i −1

)

.

The AV of ŶA is given by

var
[

ŶA−Y
]

= E
[

var
[

ŶA−Y |s
]]

+var
[

E
[

ŶA−Y |s
]]

= E
[

var
[

ŶA−Y |s
]]

+0

= E

[

var

[

∑
i∈s

(

π−1
i −1

)

(Yi −µ∗i )− ∑
i∈U−s

(Yi −µ∗i ) |s

]]

= E

[

Vy|x

{

∑
i∈s

(

π−1
i −1

)2
+N−n

}]

= Vy|x

{

∑
i∈U

πi
(

π−1
i −1

)2
+N−n

}

= Vy|x

{

∑
i∈U

πi
(

π−1
i −1

)2
+ ∑

i∈U
(1−πi)

}

= Vy|x ∑
i∈U

(

π−1
i −1

)

Hence the inefficiency of̂YA is

var
[

ŶA−Y
]

/var
[

Ŷµ−Y
]

= Vy|x/Vy|xU.

So the ratio of the AVs is equal to the ratio of the variance ofYi conditional onXi to the
variance ofYi conditional onXU , which depends on the predictive power ofXU for Yi given
Xi .

4. SUMMARY

The Godambe-Joshi lower bound, which defines optimal model-assisted estimators of
total, treats the auxiliary variables as known constants. It is applicable when the values of
the survey variable are independent for different units. Theorem 1 states a similar lower
bound which allows the auxiliary variables to be random, allows for multiple survey vari-
ables, and allows for correlations between values for different units (provided that sample
and non-sample values are always independent). This leads to four new conclusions:

• Modelling the marginal distribution of the auxiliary variables cannot give any im-
provement in the asymptotic AV of design-unbiased estimators of Y as the sample
and population size tend to infinity.
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• If several survey variables are collected for the sample, itdoes not reduce the lower
bound if all are considered together. Therefore multivariate modelling of several
survey variables has no benefit for the asymptotic AV.

• The optimal estimator is applicable to one-stage cluster sampling even if there are
dependencies between values of the survey variables for different units in the same
cluster. However the estimator is not optimal for more complex cases of multi-stage
sampling which are often used in practice.

• Conditional models for the variable of interest for a unit should condition on the
auxiliary data for all population units, not just the auxiliary data for that unit. This
can make a difference for contextual models in cluster sampling.
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APPENDIX: PROOFS

Let Ŷπ = ∑i∈sπ−1
i Yi . This is the Horvitz-Thompson or inverse probability estimator

which is exactly design unbiased (e.g. Sarndal et al., 1992). Let Sbe the set of all possible
sampless.

Lemma: Under the assumptions stated in Theorem 1,

∑
s∈S

p(s)cov
[

Ŷπ −Y,Ŷ− Ŷπ
∣

∣s,XU
]

= 0.

Proof of Lemma:

∑
s∈S

p(s)cov
[

Ŷπ −Y,Ŷ− Ŷπ
∣

∣s,XU
]

= ∑
s∈S

p(s)E
[(

Ŷπ −Y−E
[

Ŷπ −Y
∣

∣s,XU
])(

Ŷ− Ŷπ
)∣

∣s,XU
]

= ∑
s∈S

p(s)E

[(

∑
i∈s

π−1
i (Yi −µi)− ∑

i∈U

(Yi −µi)

)

(

Ŷ− Ŷπ
)

∣

∣

∣

∣

∣

s,XU

]

= ∑
s∈S

p(s)E

[(

∑
i∈s

(

π−1
i −1

)

(Yi −µi)− ∑
i∈U−s

(Yi −µi)

)

(

Ŷ− Ŷπ
)

∣

∣

∣

∣

∣

s,XU

]

= ∑
s∈S

p(s)E

[(

∑
i∈s

(

π−1
i −1

)

(Yi −µi (XU))

)

(

Ŷ (s,Ds,XU)− Ŷπ (s,Ds,XU)
)
∣

∣s,XU
]

−∑
s∈S

p(s)E

[(

∑
i∈U−s

(Yi −µi (XU))

)

(9)

(

Ŷ(s,Ds,XU)− Ŷπ (s,Ds,XU)
)∣

∣s,XU
]

The second term of (9) is zero because(Zi ,Yi) and(Z j ,Yj ) are independent for alli ∈ sand
j 6∈ sconditional onXU , so thatYi is conditionally independent of

(

Ŷ (s,Ds,XU)− Ŷπ (s,Ds,XU)
)
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for i 6∈ s. So (9) becomes

∑
s∈S

p(s)cov
[

Ŷπ −Y,Ŷ− Ŷπ
∣

∣s,XU
]

= ∑
s∈S

p(s)E

[

∑
i∈s

((

π−1
i −1

)

(Yi −µi (XU))
)

(

Ŷ (s,Ds,XU)− Ŷπ (s,Ds,XU)
)
∣

∣s,XU
]

(10)

Now, p(s) is the conditional probability that samples is selected givenXU . Hence

∑
s∈S

p(s)E

[

∑
i∈s

((

π−1
i −1

)

(Yi −µi (XU))
)

(

Ŷ(s,Ds,XU)− Ŷπ (s,Ds,XU)
)∣

∣s,XU
]

= E

[

∑
i∈s

((

π−1
i −1

)

(Yi −µi (XU))
)

(

Ŷ(s,Ds,XU)− Ŷπ (s,Ds,XU)
)∣

∣XU
]

and so (10) becomes

∑
s∈S

p(s)cov
[

Ŷπ −Y,Ŷ− Ŷπ
∣

∣s,XU
]

= E

[

∑
i∈s

((

π−1
i −1

)

(Yi −µi (XU))
)

(

Ŷ (s,Ds,XU)− Ŷπ (s,Ds,XU)
)∣

∣XU
]

= E

[

E

[

∑
i∈s

(

π−1
i −1

)

(Yi −µi (XU))

(

Ŷ (s,Ds,XU)− Ŷπ (s,Ds,XU)
)∣

∣XU ,YU ,ZU
]∣

∣XU
]

= E

[

∑
s∈S

p(s)∑
i∈s

(

π−1
i −1

)

(Yi −µi (XU))

(

Ŷ (s,Ds,XU)− Ŷπ (s,Ds,XU)
)
∣

∣XU
]

= E

[

∑
i∈U

∑
s∋i

p(s)
(

π−1
i −1

)

(Yi −µi (XU))

(

Ŷ (s,Ds,XU)− Ŷπ (s,Ds,XU)
)∣

∣XU
]

(11)

where∑
s∋i

denotes summation over all sampless which contain uniti. By assumption,̂Y is

design unbiased so

∑
s∈S

p(s)
(

Ŷ (s,Ds,XU)− Ŷπ (s,Ds,XU)
)

= 0
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and therefore

0 = ∑
s∋i

p(s)
(

Ŷ (s,Ds,XU)− Ŷπ (s,Ds,XU)
)

+∑
s6∋i

p(s)
(

Ŷ (s,Ds,XU)− Ŷπ (s,Ds,XU)
)

for anyi ∈U so that

∑
s∋i

p(s)
(

Ŷ (s,Ds,XU)− Ŷπ (s,Ds,XU)
)

= −∑
s6∋i

p(s)
(

Ŷ (s,Ds,XU)− Ŷπ (s,Ds,XU)
)

for anyi ∈U . Substitution into (11) gives

∑
s∈S

p(s)cov
[

Ŷπ −Y,Ŷ− Ŷπ
∣

∣s,XU
]

= −E

[

∑
i∈U

∑
s6∋i

p(s)
(

π−1
i −1

)

(Yi −µi (XU))

(

Ŷ (s,Ds,XU)− Ŷπ (s,Ds,XU)
)
∣

∣XU
]

= −E

[

E

[

∑
i∈U

∑
s6∋i

p(s)
(

π−1
i −1

)

(Yi −µi (XU))

(

Ŷ (s,Ds,XU)− Ŷπ (s,Ds,XU)
)∣

∣s,XU
]∣

∣XU
]

= −E

[

∑
i∈U

∑
s6∋i

p(s)
(

π−1
i −1

)

E

[

(Yi −µi (XU))

(

Ŷ (s,Ds,XU)− Ŷπ (s,Ds,XU)
)∣

∣s,XU

]∣

∣

∣

∣

XU

]

. (12)

From the assumptions of the theorem,Yi andYj are conditionally independent whenever
i ∈ s and j 6∈ s for all samplesswith p(s) > 0. HenceYi is conditionally uncorrelated with
(

Ŷ (s,Ds,XU)− Ŷπ (s,Ds,XU)
)

for all sampless 6∋ i with p(s) > 0. Hence the right hand
side of (12) is zero.

Proof of Theorem 1:

var
[

Ŷ−Y
∣

∣XU
]

= E
[

var
[

Ŷ−Y
∣

∣s,XU
]
∣

∣XU
]

+var
[

E
[

Ŷ−Y
∣

∣s,XU
]
∣

∣XU
]

≥ E
[

var
[

Ŷ−Y
∣

∣s,XU
]∣

∣XU
]

= ∑
s∈S

p(s)var
[

Ŷ−Y
∣

∣s,XU
]
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= ∑
s∈S

p(s)var
[

Ŷ− Ŷπ + Ŷπ −Y
∣

∣s,XU
]

= ∑
s∈S

p(s)
{

var
[

Ŷ− Ŷπ
∣

∣s,XU
]

+var
[

Ŷπ −Y
∣

∣s,XU
]

+2cov
[

Ŷ− Ŷπ,Ŷπ −Y
∣

∣s,XU
]}

≥ ∑
s∈S

p(s)var
[

Ŷπ −Y
∣

∣s,XU
]

+2∑
s∈S

p(s)cov
[

Ŷ− Ŷπ,Ŷπ −Y
∣

∣s,XU
]

(13)

The Lemma states that the second term of (13) is zero. Also,Ŷπ is equal toŶµ plus
terms depending only ons andXU and hence constant conditional ons andXU . Hence
var
[

Ŷπ −Y |s,XU
]

= var
[

Ŷµ−Y
∣

∣s,XU
]

. Making both of these substitutions into (13) gives:

var
[

Ŷ−Y
∣

∣XU
]

≥ ∑
s∈S

p(s)var
[

Ŷµ−Y
∣

∣s,XU
]

(14)

Inequality (14) implies that

var
[

Ŷ−Y
]

= E
[

var
[

Ŷ−Y
∣

∣XU
]]

+var
[

E
[

Ŷ−Y
∣

∣XU
]]

≥ E
[

var
[

Ŷ−Y
∣

∣XU
]]

≥ E

[

∑
s∈S

p(s)var
[

Ŷµ−Y
∣

∣s,XU
]

]

. (15)

Notice thatŶµ is unbiased conditional onsandXU :

E
[

Ŷµ−Y
∣

∣s,XU
]

= E

[

∑
i∈s

π−1
i (Yi −µi)+ ∑

i∈U

µi −Y

∣

∣

∣

∣

∣

s,XU

]

= ∑
i∈s

π−1
i (µi −µi)+ ∑

i∈U
µi − ∑

i∈U
µi = 0.

Hence

var
[

Ŷµ−Y
]

= E
[

var
[

Ŷµ−Y
∣

∣XU ,s
]]

+var
[

E
[

Ŷµ−Y
∣

∣XU ,s
]]

= E
[

var
[

Ŷµ−Y
∣

∣XU ,s
]]

+var[0]

= E
[

var
[

Ŷµ−Y
∣

∣XU ,s
]]

= E

[

∑
s∈S

p(s)var
[

Ŷµ−Y
∣

∣s,XU
]

]

(16)

Substituting (16) into (15) gives

var
[

Ŷ−Y
]

≥ var
[

Ŷµ−Y
]

which is result (6) of the Theorem.
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If Yi andYj are conditionally independent givenXU for all i 6= j, then the conditional
variance ofŶµ−Y is

var
[

Ŷµ−Y
∣

∣XU
]

= E

[

var

[

∑
i∈s

π−1
i (Yi −µi)+ ∑

i∈U
µi −Y

∣

∣

∣

∣

∣

s,XU

]
∣

∣

∣

∣

∣

XU

]

+var[0|XU ]

= E

[

var

[

∑
i∈s

(

π−1
i −1

)

Yi − ∑
i∈U−s

Yi

∣

∣

∣

∣

∣

s,XU

]∣

∣

∣

∣

∣

XU

]

= E

[

∑
i∈s

(

π−1
i −1

)2 σ2
i + ∑

i∈U−s

σ2
i

∣

∣

∣

∣

∣

XU

]

= ∑
i∈U

πi
(

π−1
i −1

)2 σ2
i + ∑

i∈U

(1−πi)σ2
i

= ∑
i∈U

{

πi
(

π−1
i −1

)2
+1−πi

}

σ2
i

= ∑
i∈U

(

π−1
i −1

)

σ2
i

which is result (7) of the Theorem. The unconditional variance ofŶµ−Y is

var
[

Ŷµ−Y
]

= E
[

var
[

Ŷµ−Y
∣

∣XU
]]

+var
[

E
[

Ŷµ−Y
∣

∣XU
]]

= E

[

∑
i∈U

(

π−1
i −1

)

σ2
i

]

+var[0]

= E

[

∑
i∈U

(

π−1
i −1

)

σ2
i

]

which is result (8).
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