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CONDITIONAL AND UNCONDITIONAL MODELSIN
MODEL-ASSISTED ESTIMATION OF
FINITE POPULATION TOTALS

David G. Stedl and Robert G. Clark
Centre for Statistical and Survey Methodology
University of Wollongong Australia

ABSTRACT

The well known Godambe-Joshi lower bound for the anticigpatariance of design
unbiased estimators of population totals treats the auyilvariables as constants. We
extend the result to models where these variables are raaddishow that the generalized
difference estimator using the expected values conditmmall auxiliary values is optimal.
This has several implications including the fact that aulleg multiple survey variables
does not reduce the lower bound.
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1. INTRODUCTION

1.1 Inferential Frameworksfor Survey Sampling

This article extends a well known result relating to the hmsdsible estimator of a
finite population total according to a particular critetize anticipated variance. Consider
a populatiorJ consisting olN units, where units may be people, households, businesses or
other entities. A sampleC U is selected fron using some probability sampling method,
with 5 = PJi € g denoting the probability of selection for umi U. A variable of interest
Y, is defined for each unite U. The aim is to estimat¥ = Y Yi using data ory; for
sampled units € sonly. We denote the vector of for i € sby Ys. A vector of auxiliary
variablesX; may also be available and observed for all unigdJ. We write Xy andYy to
denote the collection of all of these variables for all umtghe population.

For example, the aim may be to measure the total employmentdiking age adults
in a country. In this case, the unitsvould be people and the populatibhwould be all
working age adults. The variab¥ would be defined to equal 1 if persotis employed
and 0 otherwise. A survey would be administered to detertfieemployment status of
all people in a sample There is often external information on age and sex for ajppe
in the population, so the elementsXfwould be indicator variables indicating the age and
sex of persom. The objective is to combine information &nfor i € swith Xy to give the
best estimator of.

(© Pakistan Journal of Statistics 529



530 Conditional and Unconditional Models

A number of frameworks have been used in sample survey thechyding the design-
based, model-based and model-assisted frameworks. Iretligndbased frameworl
andYy are regarded as constants, and the only source of randomsrnthgsselection of
the samples. This framework avoids any explicit modelling &, andYy. The “design
expectation” of an estimator is defined to be its expectedevaler all possible samples,
with Xy andYy treated as constants. Estimator&adre required to be exactly or approx-
imately “design-unbiased”, that is their design expeotatiexpectation over all possible
samples) must be exactly or approximately equaY toFor a discussion of the design-
based framework, see for example Cochran (1977) and Sa®ahsson, and Wretman
(1992, ch.1-2). Design-variances are similarly definedetthie variances over the possible
values ofs, with Xy andYy treated as constants.

In the model-based, or prediction framework, a model isydastd forYy conditional
on Xy. Estimators are usually evaluated in terms of the expectatonditional onXy
and on the particular sampteselected, so that the only sources of randomness are the
population value¥(;. Expectations conditional @andXy are called model-expectations;
model-variances are defined similarly. Predictor¥ @fre generally required to be model-
unbiased, in the sense that the model expectation of thmagsti minusy should equal
zero, and to have low model variance. For a discussion of tigetrbased framework, see
for example Brewer (1963), Royall (1970) and Valliant, Doan, and Royall (2000).

In the model-assisted approach to estimating a finite ptipualéotal, both probability
sampling methods and population models have a role (Saatadl, 1992, pp.227,238-
239). BothsandYy are regarded as random, with a model of some kind being askume
for Yy. Xy are regarded as constants. Estimators are required toleagatipproximately)
design unbiased, that is unbiased over repeated samplirtitomal onYy andXy. Sub-
ject to this constraint, it is desirable to reduce the vargaaver both repeated sampling
and repeated realisations 4§ based on an assumed model. The most commonly used
estimator in the model-assisted framework is the genedlizgression estimator. Most
estimators of population totals used in practice are speases of the generalized regres-
sion estimator. Sarndal et al. (1992) contains an extewssarission of this estimator and
the model-assisted framework.

1.2 Optimal Estimation

The existence of optimal estimators has been investigatealifof these frameworks.
In the design-based framework, an optimal estimatoY afhould ideally minimize the
design-variance in the class of all design-unbiased egtitfiaHowever, it has been shown
that there is no such estimator (Godambe, 1955). One prothfi@fesult (Basu, 1971)
shows that for every population, there is in theory a desighiased estimator of a total
which has zero variance for that particular population,thate is no estimator which has
the lowest variance for all populations. (As noted in (Bd€i/1), this result is not usable
in practice because it requires perfect knowledge of theifadipn values, but it neverthe-
less provides a useful benchmark.) The design-based frarkéswtherefore not suitable to
give guidance on best estimators without restricting tingezof populations being consid-
ered. This can be done informally, for example ratio estorslhave lower design variance
than the simpler number-raised estimator for populatiatisfying a simple condition, for
simple random sampling (Cochran, 1977, p.157).
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The non-existence of an optimal design-based estimat¥rwés one of the motiva-
tions for the development of the model-assisted framewlarkhis framework, estimators
are still required to be exactly or approximately desigiiased. Unlike the design-based
framework, however, the aim is to minimize the model exptemteof the design variance,
under an assumed model fgy. This quantity, which has been called the anticipated vari-
ance (Isaki & Fuller, 1982), can be minimized for design4asbd estimators (Godambe
& Joshi, 1965). An estimator with this optimality propertpuld be design-unbiased re-
gardless of the correctness of the population model, andddzrioptimal in the sense of
minimising the anticipated variance provided the modaius t

Consider the following model fox:

ENM]=u
var[Yj] = ¢? )
Y;,Y; independenti # j

Design-unbiased estimatofssatisfy the inequality

var[Y —Y] > % (mt-1)0? 2)

where variance is over both repeated sampling and repesadidations of, (Godambe
& Joshi, 1965). The estimator which meets the lower bound is

Ya= 3 b 3 ). ®)
e (IS

The estimato)?(u generally cannot be calculated in practice, because thesalfy; and
their sum over the population would be unknown in almost afles. The usual strategy
in practice is to assume thagtare known functions Xy and some unknown parameters.
These parameters can then be estimated from sample datastimeétesy” can then be
used in place ofy in (3). Estimators formed in this way may have variance whérids
to the lower bound (2) as the sample size and population sitetbnd to infinity, given a
correct model fof; }. For example, the generalized regression estimator hapithperty
(Sarndal, 1980). Estimators with this property can be dadleymptotically optimal.

This paper extends result (2) to the case where the auxileigblesX, are random
variables, for certain types of designs. Section 2 contaitiseorem for this case. The
theorem allows the possibility that multiple survey valébare collected and also allows
a model with dependencies between different values of theegwariable, subject to a
restriction. A difference estimator similar to (3) is shoterbe optimal, but withy replaced
by E[Y; | Xy ]. Hence the apparently arbitrary treatmenXgfas constants by Godambe and
Joshi (1965) is reasonable, as the same estimator is optimdar a more general model.
Section 3 gives four implications of this result and Secdsummarises the conclusions.

2. ATHEOREM ON THE AV UNDER AN UNCONDITIONAL MODEL

This section contains a theorem giving a lower bound for titeeipated variance (AV)
of design-unbiased estimators\afand an optimal estimator 6f. The theorem allows for
the possibility that other survey variabl&s, are observed fare s.
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The theorem requires that the sampling scheme is non-iadiiven A sampling scheme
is said to be non-informative if

p(s) = P|[sis selectedivy, 2y, Xy | = P[sis selectedXy |,

i.e. the sampling process depends onlyXpn which is known at the time of design, and
not on the survey variablég andzy which are collected during the survey.
The populatiorXy, Yu,Zy will be assumed to be generated by a model such that

EMMIX0]=w=H(X)
var[Yi [xy] = of = of (Xu) } (4)

Note that the expectations in (4) are model-expectatiohis model is extremely general
because it allows the means and varianceg aebnditional onXy to be any functions of

Xy. In practice {i } would be assumed to be known functionsXgf and some unknown

parameters. The unknown parameters would need to be estirfraim sample data, so
that the lower bound in the Theorem could not be perfectlyeselt in practice.

Theorem 1

Suppose that a variab¥e and a number of other variabl&sare observed fore s. It
is assumed that sampling is non-informative. The populaXig, Yy ,Zy is assumed to be
generated by model (4). It is further assumed tYatz;) is conditionally independent of
(Yj,Z;j) givenXy for all i # j such that there is at least one sample S with p(s) > 0
wherei € sandj ¢ s.

LetY =Y (s,Xu,Ds) be a design unbiased estimatoio$o that

E[Y X0, Yu,2u] =Y
whereDs denotes the sample datég, Zs). Define\?Ll by

=3 YO0 5 () (5)

les

Then
var[Y —Y] > var [Y,—Y]. (6)

If Y; andY; are conditionally independent giveqy for all i # j, then

var[u-Y[xu] = 3 (- 1)o7 () (7)

var[Y,— Y] =E l; (mt-1)c? (XU)] . (8)
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See Appendix for proof. The proof is similar to Godambe anshi¢1965) except
that the conditioning orXy has been explicitly stated. Wity a random variable, we
have obtained essentially the same result as Godambe amd D885), provided that =
Y (s,Xu,Ds).

The condition regarding independence(¥f,Z;) and (Y;,Z;) allows for these to be
dependent for some# | provided that there is never a dependency between values in
the sample and values not in the sample. This is is a genatializof the condition in
Godambe and Joshi (1965), whéfavas assumed to be independenYpfor everyi # j.
The generalization allows the result to be applied to oagestluster sampling where there
are dependencies betwe@fi Z;) and(Y;,Z;) fori andj in the same cluster, provided that
observations from different clusters are independent.rékelt does not cover multistage
sampling, because in this case there may be correlationgbetthe values of the sampled
and unsampled units from each primary sampling unit. Howéweould cover most other
designs, including stratified single-stage sampling.

There is no requirementin Theorem 1 or in Godambe and Jo365(Tor the estimator
Y to be linear.

3. IMPLICATIONSOF THE THEOREM

No Valuein Modelling Xy

The values{y may follow some complex model, for example there may be @stimg
dependencies between the elementofor between the elements &f and X;. The
theorem shows thaﬁjJl is the optimal estimator regardless of the distributiorkgf The
values ofE [Yi|Xy] are required to calculatél, and generally modelling of; conditional
on Xy is needed to estimaté [Y;|Xy]. There is no improvement in the lower bound on
the AV of estimators o from considering the marginal distribution. Hence no bénefi
from knowing this marginal distribution would be expectatijeast for sufficiently large
samples.

It should be noted that the Theorem states a lower bound visigenerally only at-
tained asymptotically. In practice, the model fY;|Xy] must be estimated from sample
data, so that for small samples there could be some benefitdomsidering the marginal
distribution ofXy.

Multiple Survey Variables

Itis clear from Theorem 1 that considering several surveiabéesY; andz; together
does not reduce the lower bound for estimate¥ ofThe same AV can be achieved by
modelling one at a time each variable collected in the surVag practical implication is
that there is no large sample reduction in the AV if multigéeimodels for several survey
variables conditional oXy are used. Again, it should be noted that the lower bound is
generally only attained asymptotically, so it is possibla tmultivariate models could give
some benefit for small samples.

Y, is Still Optimal under Cluster Sampling

In one-stage cluster sampling, a sample of clusters of ismiglected, and all units
in these clusters are selected. In this case, it would bel tiswssume that there may
be dependencies between the values of the survey variairlesits in the same cluster,
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but no dependencies across clusters. In this situatiorpréfe1 shows tha, is still the
optimal estimator. Hence modelling the dependencies witié cluster cannot give any
improvement in estimators of, at least for large samples. One practical example of one-
stage cluster sampling might be all people in selected lmids, where households are
selected by telephone sampling.

In multi-stage sampling, a sample of first stage units (aiguebs) is selected, followed
by a sample of second stage units (e.g. households) frocteelfirst stage units, followed
by a sample of third stage units (e.g. from selected secauksinits, and so on. One-
stage cluster sampling is a simple special case of muliestampling, but in practice more
complex multi-stage samples are often used. Theorem 1 wmilgenerally apply in this
case, because there could be correlations between sanmpleadia-sampled units. In some
multi-stage household surveys, the final stage of selectiosists of all people in selected
households. In this case, the correlations across howtsehwy be negligible compared
to the correlations between people in the same householdas®heorem 1 may apply at
least approximately.

Mukerjee and Sengupta (1989) derived the optilimalar model-assisted estimator for
correlated data, which could potentially be applied to iratlige samples in general.

Auxiliary Data for All Units Should Be Used A
The lower bounds in Theorem 1 are achieved by the estinYaior(5) with

M=E[Yi[Xy]

which conditions on the values of the auxiliary variablesfibunits in the population. This
may be different fronk [Y; | X; | which is widely used in motivating estimators, for example
the generalized regression estimator (Sarndal, 1980)renddnlinear estimators of Firth
and Bennett (Firth & Bennett, 1998) and Lehtonen and Veijafhehtonen & Veijanen,
1998). In other words, it is usually assumed that the exfieataf Y; conditional onXy
does not depend aXj for j # i. This may not be reasonable for populations with natural
clustering or a hierarchical structure (Steel & Welsh, 2006

Cluster sampling (or stratified cluster sampling) of all plecin selected households
may be one case where

EM[Xu] #E[Y[X].

In some household surveys, consists of demographic data. A person’s survey variable
could depend on their own demographic characteristicstavgktof other household mem-
bers, because the latter could indicate family or livinggagements. Models of this kind
are called contextual models; see for example Kreft and 2evg1998).

Consider a regression estimator basedEdyj | X ],

Ya= 3t Yi—m)+ Y W
les le
wherep = E[Y;|X]. This is not the same a%, becausé, usesy; = E[Y;|[Xy]. If it
can be assumed that there are no correlations across diffevaseholds, then Theorem
1 means that the AV ofa must be greater than or equal to the AV\?Qf To illustrate
the possible loss from usir instead of the optimal estimator, consider the special case
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when: 1 are fixed constants not depending Xu; X are independently and identically
distributed fori € U; {Y; :i € U} are independent conditional &fy; {(X,Y):ieU} are
identically distributed; the sample size, is non-random so that=E[n] = $ . Itis

i€
further assumed that? = var[Yj|Xy] is equal to a constan¥;,y, for alli € U, and that
var[Yi|X] is equal to a constai, for all i € U. From Theorem 1,

iy <3 - 06| <Ny 3 (72

i€
The AV of Ya is given by
var[Ya—Y] = E[var[Ya—Y|s]] +var[E[Ya—Y]s]]
= E[var[Ya-Y|s]] +0

var [Z (R -0 )~ 3 (- H) 'SH

les

g o]
- Vyx{ Tq(qu—l)erN—n}

= Vyx{E W(Tﬁl—l)zfgj(l—ﬁ)}
= Vy\xi; (m*-1)

Hence the inefficiency ofa is

var [Ya—Y] /var [V — Y] = Vyx/Vyjuu-

= E

= E

So the ratio of the AVs is equal to the ratio of the varianc&;afonditional onX; to the
variance ofY; conditional onXy, which depends on the predictive powetf for Y; given

Xi.
4. SUMMARY

The Godambe-Joshi lower bound, which defines optimal masgisted estimators of
total, treats the auxiliary variables as known constants. dpplicable when the values of
the survey variable are independent for different unitsedrem 1 states a similar lower
bound which allows the auxiliary variables to be randongvadl for multiple survey vari-
ables, and allows for correlations between values for ffeunits (provided that sample
and non-sample values are always independent). This leddsrtnew conclusions:

e Modelling the marginal distribution of the auxiliary vabies cannot give any im-
provement in the asymptotic AV of design-unbiased estimsatdY as the sample
and population size tend to infinity.
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o If several survey variables are collected for the sampldodés not reduce the lower
bound if all are considered together. Therefore multitarimodelling of several
survey variables has no benefit for the asymptotic AV.

e The optimal estimator is applicable to one-stage clustempdiag even if there are
dependencies between values of the survey variables ferelit units in the same
cluster. However the estimator is not optimal for more canases of multi-stage
sampling which are often used in practice.

e Conditional models for the variable of interest for a unibsll condition on the
auxiliary data for all population units, not just the auaily data for that unit. This
can make a difference for contextual models in cluster sgrgpl
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APPENDIX: PROOFS

Let Yy = ZiesT[iilYi- This is the Horvitz-Thompson or inverse probability esttor
which is exactly design unbiased (e.g. Sarndal et al., 199)Sbe the set of all possible
samples.

Lemma: Under the assumptions stated in Theorem 1,

p(s)cov| Y —Y,Y - Y,
SEZ [ Tt Tt

sXu] =0.

Proof of Lemma:

Z;p(s)cov[\?,T —Y,Y — Y| s.Xy]

se

~ 3 PO (Y ~E [ Y]s X)) (V=) [s3)

= Esp(S)E _

|
= ESP(S)E < (Tﬁfl—l)(\ﬁ—m—gi (\ﬁ—u)) (Y —Yn)

(Y —H) - 3 (0 —w)) (YY)

les 1

]

- zpee| (v -m0-mo0)
- (?(SvDSaXU)_?n(SaDs,XU))

s, Xu]
- P(SE K Z, (Yi—M(Xu))> (9)
(Y (s.Ds, %) — (s, Ds, Xu)) | 5, XU

The second term of (9) is zero beca(8gY;) and(Z;,Y;) are independent for alle sand
j € sconditional onXy, so thaty; is conditionally independent of

(¥ (5.5, X0) — (s, D5, X))
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fori ¢ s. So (9) becomes

Zp(s)cov[\?n— Y,Y — Y| s, XU

ES

zsp l - (M- ()

IES

(Y (s,Ds,Xu) — Yu(s,Ds,Xu)) | , X0 ] (10)

Now, p(s) is the conditional probability that sampdés selected givedXy. Hence

Zsp [Z — 1 (X))
(\?(st,Xu) Yie(s,Ds, X)) |, XU ]
l — 1 (X))

(Ws,Ds,xu)—?n(s,Ds,m)w

and so (10) becomes

p(s)cov| Yr—Y,Y — Yol s, Xy
PLE [ ExY

Bl (D - 0)

:Ies (¥ (s:Ds:X0) — Yae(5, D, X0)) | XU]
_E E[Z(Tl}l—l)(Yi—M(Xu))
T (D(8D0k0) (D0 %0)) 090,20 ]
hezs 1) (Y — 1 (X))
(¥ (8,05, Xu) = ¥ (5, D5, X)) | XU

= B2 2P0 (M =1) (%=1 ()
_ (Y (s,Ds,Xu) — Y (S, Ds,X0) ) | X ] (11)

wherez denotes summation over all sampteshich contain unif. By assumptiony is
Sol
design unbiased so

zgp S DSa ?T[(S7D51XU)) :O
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and therefore

0 - Zp()(\?(st,Xu) Yr(s,Ds, Xu))

+§ ) (¥ (5.0, %) — ¥ (s.Ds, X))

for anyi € U so that

> p(s) (Y (s,Ds,Xu) — (S, Ds, Xu))

S % p(s) (Y (8,Ds,Xu) — (5, Ds, X))

for anyi € U. Substitution into (11) gives

Z;p(s)cov[f(,I -

se

= -E ;gp ) (Y — 1 (X))
(¥ (s,Ds,X0) — ¥ (s, D5, X0)) | Xu]

- —E_ Lg; ) (%~ ()

]

S %gp [(Y 1 (X))

(Ws,Ds,xu)—ws,os,xU))\s,xU]\xu].

(Y (5,Ds,X0) — Yr(, D, X0)) | 8, X0 ] | XU ]

539

(12)

From the assumptions of the theorehandY; are conditionally independent whenever
i € sandj ¢ sfor all sampless with p(s) > 0. HenceY; is conditionally uncorrelated with
(Y (s,Ds,Xu) — Yr(s,Ds, Xy )) for all sampless % i with p(s) > 0. Hence the right hand

side of (12) is zero.

Proof of Theorem 1:
var [Y — Y| Xu]

E
> var [ Y] s 0] [
= zgp(s)var[\?—Y\s,Xu}

ar [¥ - Y|s 0] [ o] +var [E[Y Y[ 0] %]
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zsp(s)var[\?—\?n+\?n—Y ]
sc

zsp ) {var [Y —Yn|s,Xu] +var [Yn—Y|s,Xy]
S

+200v[\? Yo Y= Y| s, %] }
zsp )var Y,T Y|s,Xu]

+225p con Yoo, Yo — Y|s Xu] (13)
S

The Lemma states that the second term of (13) is zero. Alsts equal to\?u plus
terms depending only osandXy and hence constant conditional s@ndXy. Hence
var [Yn—Y|s Xy | =var[Y,—Y|s,Xy]. Making both of these substitutions into (13) gives:

var[Y —Y|Xy] > ESD(S)V&F[\A(“—Y|S,XU] (14)
se
Inequality (14) implies that

varY-Y] = E [var[\:(—Y\XU]] +var [E [Y-Y|Xu]]
E [var[Y —Y|Xu]]

E [zsp(s)var[\?u—Y\s,XU]] . (15)

Y

Y

Notice that\?Ll is unbiased conditional amandXy:

E[Vu-Y[sx] = lz (=W + 5 WY

les

= Y-+ Y-y w=0.
|€S i€ i€
Hence
var[Yu—Y] = E[var[Yu—Y|Xu,s]] +var[E [Yu—Y|Xu,5]
E [var [Yu—Y|Xu,s]] +var(0]
E [var [Yu—Y|Xu,s]]
= E|Y p(sjvar [Yu—Y|s.Xu (16)
S penalhovlsn)

Substituting (16) into (15) gives
var[Y - Y] > var [Yu— Y]

which is result (6) of the Theorem.
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If Yi andY;j are conditionally independent givedy for all i # j, then the conditional
variance ofY, — Y is

var[\?u—Y\Xu] = E|var Zn; Y-+ S m— YsXUHXU]
i = ic
+var[O|XU]
= E|var Yi|s,Xu | | Xu
L IES |€§*S | ‘|‘ ]
- E (n’(l—l)zcrinr o? XU]
RES ieU—
= S Y (1-m)o?
i€ IS
= %{Tﬁ mi-1 +1—Tl'a}cri2
i€
- S mi-ye
ic

which is result (7) of the Theorem. The unconditional vac'sanf\?u—Y is

var[Yu—Y] = E|[var[Yu—Y|Xu]] +var[E [Yu—Y|Xu]]

= E L% (' -1)of
= E L% (' -1) 0?]

+var[0]

which is result (8).
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