2008

On exploiting spatial reuse in wireless ad hoc networks

Ziguang Yan

University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong
Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

http://ro.uow.edu.au/theses/111

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
On Exploiting Spatial Reuse in Wireless Ad Hoc Networks

A thesis submitted in partial fulfillment of the requirements for the award of the degree

Master of Engineering by Research

From

UNIVERSITY OF WOLLONGONG

By

Ziguang Yan

School of Electrical, Computer and Telecommunications Engineering

March 2008
Statement of Originality

I, Ziguang Yan, declare that this thesis, submitted in partial fulfillment of the requirements for the award of Master of Engineering - Research, in the School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution.

Ziguang Yan

March 2008
Abstract

Wireless ad hoc networks have been increasingly popular in recent years with the development of mobile devices. However, both theoretical and simulation works show that the capacity of wireless ad hoc networks is bounded due to its nature of distributed and multihop. Spatial reuse is a promising technology to increase the capacity of wireless ad hoc networks by allowing more transmissions to occur simultaneously. In this thesis, we enhance 802.11 performances by exploiting the benefits of spatial reuse in wireless ad hoc networks which is achieved by transmission power control (TPC) and directional antennas.

We first propose spatial TPC based on basic TPC to fully exploit the benefits of spatial reuse achieved by transmission range control. Simulation results show that spatial TPC achieves higher throughput and lower power consumption compared to 802.11 and basic TPC. We also develop four schemes of directional MAC protocols with the intention of overcoming the new hidden node problem faced by directional antennas. By extensive simulations under different topologies and traffic patterns, we find the directional RTS/CTS (DD) scheme outperforms 802.11 as well as other three schemes by fully exploiting the benefits of spatial reuse achieved by directional antennas.

Keywords:
Wireless ad hoc networks, MAC, CSMA, 802.11 DCF, Spatial reuse, Power control, Directional antennas, OPNET simulation.
Table of Contents

Abstract ... 3

List of Figures ... 6

List of tables .. 9

List of tables .. 9

Abbreviations .. 10

Chapter 1: Introduction ... 13

Chapter 2: Preliminaries ... 16

 2.1 Physical issues ... 16

 2.2 Neighbor discovery and location awareness ... 22

 2.3 MAC protocols .. 23

 2.4 Broadcasting .. 26

Chapter 3: 802.11 DCF ... 32

 3.1 Functional description ... 32

 3.1.1 DCF .. 32

 3.1.2 Power saving .. 38

 3.2 802.11 performance analysis ... 40

 3.2.1 Numerical results ... 40

 3.2.2 Simulation results and analysis .. 45

 3.3 Chapter Summary ... 48

Chapter 4: OPNET simulation .. 49

 4.1 OPNET modeling mechanisms ... 49

 4.1.1 Network domain ... 50

 4.1.2 Node domain .. 51

 4.1.3 Process domain .. 55
List of Figures

Figure 1: Directional antenna model ... 17
Figure 2: Three conflictsions scenarios ... 18
Figure 3: Interference range ... 20
Figure 4: DPSK modulation .. 21
Figure 5: Broadcasting intersection ... 27
Figure 6: *on/off* and relay-node-based broadcast schemes 31
Figure 7: DCF channel access ... 35
Figure 8: RTS/CTS exchange ... 36
Figure 9: 802.11 power saving ... 39
Figure 10: Atomic topologies ... 40
Figure 11: Four way handshake ... 41
Figure 12: Throughput without collision risks ... 43
Figure 13: Throughput under collisions ... 44
Figure 14: Throughput (left) and delay (right) for topology I 45
Figure 15: Throughput (left) and delay (right) for topology II.A 46
Figure 16: Throughput (left) and delay (right) for topology II.B 47
Figure 17: OPNET domain hierarchy ... 49
Figure 18: Wireless pipeline .. 50
Figure 19: Coordinate system ... 51
Figure 20: Node domain ... 52
Figure 21: Statistics index .. 52
Figure 22: Antenna module sharing ... 53
Figure 23: Antenna coordinate system (φ $[0, 180]$ 0 $[0, 360]$) 53
Figure 24: Omni-directional and directional antennas .. 54
List of tables

Table 1: IFS times ... 33
Table 2: Radio module attributes .. 63
Table 3: Interrupts for 802.11 DCF 76
Table 4: Deference ... 78
Table 5: Power consumptions under three statuses 83
Table 6: Neighbor information table 87
Abbreviations

ACK acknowledgement
AoA angle of arrival
AP access point
ATIM announcement traffic indication message
BEB binary exponential backoff
BER bit error rate
BSS basic service set
CCA clear channel assessment
CFP contention free period
CP contention period
CS carrier sense
CSMA carrier sense multiple access
CTS clear to send
CW contention window
DCF distributed coordination function
DIFS distributed (coordination function) interframe space
DPSK differential phase shift key
DMAC basic directional MAC protocol
DNAV directional network allocation vector
EIFS extended interframe space
FSM finite state machine
GPS global positioning system
IFS interframe space
LoS line of sight
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC</td>
<td>medium access control</td>
</tr>
<tr>
<td>MSDU</td>
<td>MAC service data unit</td>
</tr>
<tr>
<td>NAV</td>
<td>network allocation vector</td>
</tr>
<tr>
<td>PCF</td>
<td>point coordination function</td>
</tr>
<tr>
<td>PCS</td>
<td>physical carrier sensing</td>
</tr>
<tr>
<td>PLCP</td>
<td>physical layer convergence protocol</td>
</tr>
<tr>
<td>PS</td>
<td>power saving</td>
</tr>
<tr>
<td>RTS</td>
<td>request to send</td>
</tr>
<tr>
<td>RTT</td>
<td>round trip time</td>
</tr>
<tr>
<td>SIFS</td>
<td>shortest interframe space</td>
</tr>
<tr>
<td>SISO</td>
<td>single in single out</td>
</tr>
<tr>
<td>SNR</td>
<td>signal to noise ratio</td>
</tr>
<tr>
<td>STA</td>
<td>station</td>
</tr>
<tr>
<td>TPC</td>
<td>transmission power control</td>
</tr>
<tr>
<td>ToA</td>
<td>time of arrival</td>
</tr>
<tr>
<td>VCS</td>
<td>virtual carrier sensing</td>
</tr>
<tr>
<td>WLAN</td>
<td>wireless local area network</td>
</tr>
<tr>
<td>WM</td>
<td>wireless medium</td>
</tr>
</tbody>
</table>
Acknowledgement

I would like to express my deepest gratitude to my supervisor Dr. Raad Raad for his patience and guidance during my research. Without his support and valuable suggestions, none of this would have been possible.

I also would like to thank Darryn Lowe and Dr. Kwan-wu Chin for their working enthusiasms and kind support.

I want to thank my parents, who have been giving me spiritual and financial support to make this degree possible.

Finally I want to thank my friends and guys in TITR lab for their kindness, humor and support.