Optical property and electronic band structure of a piezoelectric compound Ga3PO7 studied by the first-principles calculation

Zhenxiang Cheng
University of Wollongong, cheng@uow.edu.au

Xiaolin Wang
University of Wollongong, xiaolin@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/aiimpapers

Part of the Engineering Commons, and the Physical Sciences and Mathematics Commons

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Optical property and electronic band structure of a piezoelectric compound Ga₃PO₇ studied by the first-principles calculation

Abstract
The structure, electronic and optical properties of a piezoelectric material, Ga₃PO₇ were studied by first-principles calculations in the framework of density functional theory. The calculated structure is in agreement with the experimental data. Band structure reveals that Ga₃PO₇ has a band gap of 3.69 eV. Analysis of partial density of states and Mulliken charge population indicates existence of GaO₅ and PO₄ anion groups in Ga₃PO₇. Furthermore, its optical properties, including dielectric constant, absorption, reflectivity, refractive index, and electron loss were calculated and analysed, which show that Ga₃PO₇ has potential applications based on combination of its piezoelectric and optical properties.

Keywords
Optical, property, electronic, band, structure, piezoelectric, compound, Ga₃PO₇, studied, first, principles, calculation

Disciplines
Engineering | Physical Sciences and Mathematics

Publication Details

This journal article is available at Research Online: https://ro.uow.edu.au/aiimpapers/109
Optical property and electronic band structure of a piezoelectric compound Ga$_3$PO$_7$ studied by the first-principles calculation

Z. X. Cheng and X. L. Wang

Spintronics and Electronic Materials Group, Institute for Superconducting and Electronic Materials, University of Wollongong, New South Wales 2522, Australia

(Received 15 May 2008; accepted 17 June 2008; published online 3 July 2008)

The structure, electronic, and optical properties of a piezoelectric material, Ga$_3$PO$_7$, were studied by first-principles calculations in the framework of density functional theory. The calculated structure is in agreement with the experimental data. Band structure reveals that Ga$_3$PO$_7$ has a band gap of 3.69 eV. Analysis of partial density of states and Mulliken charge population indicates existence of GaO$_3$ and PO$_4$ anion groups in Ga$_3$PO$_7$. Furthermore, its optical properties, including dielectric constant, absorption, reflectivity, refractive index, and electron loss were calculated and analyzed, which show that Ga$_3$PO$_7$ has potential applications based on combination of its piezoelectric and optical properties. © 2008 American Institute of Physics. [DOI: 10.1063/1.2955827]

Ga$_3$PO$_7$, having a noncentrosymmetric trigonal structure with the space group of R3m, provides great potential in applications based on its optical, piezoelectric, and pyroelectric properties. However, for a quite long time after Ga$_3$PO$_7$ was initially discovered, there were no further reports on its physical properties. This is mainly due to the difficulty in growing single crystals with sufficient size for measurement and application, especially optical measurement and application. Very recently, Ga$_3$PO$_7$ single crystals with sizes up to several centimeters have been grown by the high temperature flux method, which paves the way for further exploration of its optical and electro-optical properties, and eventually for practical applications. Therefore, it is practically meaningful to study its optical and electronic structures. In this work, we present a series of first-principles density function calculations on the structural, electronic, and optical properties of Ga$_3$PO$_7$ material.

The calculations were performed using the plane-wave pseudopotential method based on density functional theory (DFT) with the generalized gradient approximation (GGA) in the scheme of Perdew–Burke–Ernzerhof. The ionic-electron interaction was modeled by ultrasoft Vanderbilt-type pseudopotentials. Mulliken charges were calculated according to the formalism described by Segall et al. A plane-wave cutoff energy of 400 eV was employed throughout the calculation. For the sampling of the Brillouin zone, the electronic structures and optical properties use 5×5×5 and 8×8×8 k-point grids, respectively, generated according to the Monkhorst–Pack scheme.

The optical properties of Ga$_3$PO$_7$ are determined by the frequency-dependent dielectric function $\varepsilon(\omega)=\varepsilon_1(\omega)+i\varepsilon_2(\omega)$, which is mainly connected to the electronic structures. The imaginary part $\varepsilon_2(\omega)$ of the dielectric function is calculated from the momentum matrix elements between the occupied and unoccupied electronic states and given by

$$
\varepsilon_2 = \frac{2\varepsilon^2 \omega}{\Omega \varepsilon_0} \sum_{k,\ell,e} \left| \langle \psi_k^\dagger \hat{a} \cdot \hat{r} \psi_\ell^\dagger \rangle \right|^2 \delta(E_k^e - E_l^e - \omega),
$$

where ω is the light frequency, ε is the electronic charge, and ψ_k^\dagger and ψ_ℓ^\dagger are the conduction band (B) and valence band (VB) wave functions at k, respectively. The real part $\varepsilon_1(\omega)$ is derived from the imaginary part $\varepsilon_2(\omega)$ by the Kramers–Kronig transformation. All the other optical constants, such as the absorption spectrum, refractive index, and reflectivity are derived from $\varepsilon_1(\omega)$ and $\varepsilon_2(\omega)$.The structure of Ga$_3$PO$_7$ comprises PO$_4$ tetrahedral and GaO$_3$ trigonal bipyramids connected by edges to form Ga$_3$O$_{10}$ clusters. The structure is isotopic with Fe$_3$PO$_7$ and Ga$_3$PO$_7$ is the third known compound in the Ga–P–O system. Figure 1 shows the perspective views of the Ga$_3$PO$_7$ structure. We used experimentally measured x-ray diffraction data as the initial input for geometry optimization. The lattice parameters was calculated and fitted to third order Birch–Murnaghan equations of states. Table I compares the experimental and calculated data. The results show that the optimized structure expands slightly in comparison to the experimental data, which is natural due to the experimental data is derived from the single crystal grown in a high pressure environment. However, the volume difference is quite small with a value of 2.7%.

The energy band structure is calculated along the high-symmetry directions in the Brillouin zone, as shown in Fig. 2. The total density of states (DOS) and the partial DOS (PDOS) are plotted in Fig. 3.

FIG. 1. Crystalline structure of the Ga$_3$PO$_7$ crystal. (a) Perspective view from original position. (b) Perspective view projected along the a axis with the c axis horizontal and the b axis close to vertical. The GaO$_3$ and PO$_4$ polyhedra are represented in black and light gray.

Electronic mail: xiaolin@uow.edu.au.
The top of the VB is mainly composed of O 2p states, some P 3p states, and a slight contribution from Ga 4p and 4s states. The bottom of the CB is dominated by Ga 4p, in addition to a tiny amount of O 3p states and P 3p states. Ga3PO7 presents a direct band gap of 3.69 eV at the Γ point, which corresponds to an absorption edge of 336 nm. The band gaps predicted by the DFT are usually smaller than the experimental data, which means that the calculated results underestimate the real band gaps implying that the absorption edge should be shorter than 336 nm. In our calculation, the scissor operators on both the electronic structure and the optical properties were not considered. The energy bands below −20 eV are contributed by P 3s states. The energy bands between −16 and −20 eV are mainly comprised of O 2s states and P 3p states. Ga 3d states form the energy bands around −12 eV, which are highly localized, as evidenced by a very sharp peak in the DOS. The states of O 2p, Ga 4p and 4s, and P 3p form the energy bands from −10 eV to the Fermi surface. In the CB, the states are formed by unoccupied Ga 4p, Ga 4s, P 3s, P 3p, and O 2p. By analyzing the PDOS, it was found that the O 2p states had a strong admixture with P 3s states, as well as Ga 4p and 4s states, which is evidenced by the large number of peaks and the big width of the PDOS of Ga and P in the VB region. The small value of the PDOS of the Ga 4p and 4s, and P 3s states in this region, in contrast to the large value of O 2p, indicates the electron transfer to O 2p from P 3p, and Ga 4p and 4s. Therefore, Ga3PO7 has a strong covalent character, involving both Ga–O and P–O bonds. However, the P–O bond is more covalent than the Ga–O bond. The bond analysis is in accordance with the character of the structure of Ga3PO7, with two anion groups of PO4 tetrahedra and GaO5 trigonal bi-pyramids.

To better understand the bonding behavior of Ga3PO7, a calculation of the Mulliken charge population was performed, which is shown in Table II. The charge transfers from Ga and P to O are about 1.52e and 2.27e, respectively. The bond order analysis shows that the P–O bond has values of 0.59 and 0.71, depending on the coordination environment, while the Ga–O bond has more variable bond order values of 0.55, 0.5, 0.43, and 0.14, depending on the coordination environment in the Ga3PO7 structure. The closer to 1 of the bond order is the more covalent character the bond has. Therefore, the P–O bond shows more covalent character than the Ga–O bond.

The calculated dielectric functions of Ga3PO7 when the incident radiation has linear polarization along the [001] and [100] directions are shown in Fig. 4. Due to the symmetry of the crystal structure, the dielectric function when the incident radiation is polarized along the [100] direction has the same form as the one where the incident polarization is along the [010] direction. The peaks of the imaginary part of the dielectric function are related to the electron excitation. These peaks with relatively strong intensity are located at 6.12 eV (A), 8.2 eV (B), 10.13 eV (C), 15.7 eV (D), 22.1 eV (E), and 26.6 eV (F) for the curve with incident radiation along the [100][010] directions. Peaks A, B, and C correspond to the electron transition from the O 2p VB to the Ga 4p and 4s CB. Peak D corresponds to the transition from the O 2p VB to the P 3p CB. Peaks E and F are ascribed to the transition of inner electron excitation from O 2s and P 3s to the CB. The peaks corresponding to electron excitation when the incident light is polarized along the [001] direction are located at similar positions, however, the peak intensities are somewhat different, due to the structure anisotropy of the compound. The calculated static dielectric constants, ε1(0), are 2.36 and 2.30, when incident radiation is polarized along the [001] and the [010][100] directions, respectively.

Table I. Calculated and experimental lattice parameters of Ga3PO7.

<table>
<thead>
<tr>
<th></th>
<th>a (Å)</th>
<th>c (Å)</th>
<th>V (Å³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ga3PO7 Calc.</td>
<td>7.971</td>
<td>6.764</td>
<td>372.15</td>
</tr>
<tr>
<td>Ga3PO7 Exp.</td>
<td>7.885</td>
<td>6.727</td>
<td>362.20</td>
</tr>
</tbody>
</table>

*This work.

Table II. Mulliken charge population of Ga3PO7.

<table>
<thead>
<tr>
<th>Species</th>
<th>s</th>
<th>p</th>
<th>d</th>
<th>Total (e)</th>
<th>Charge (e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>1.84</td>
<td>5.08</td>
<td>0</td>
<td>6.92</td>
<td>−0.92</td>
</tr>
<tr>
<td>O2</td>
<td>1.82</td>
<td>5.22</td>
<td>0</td>
<td>7.03</td>
<td>−1.03</td>
</tr>
<tr>
<td>O3</td>
<td>1.84</td>
<td>5.13</td>
<td>0</td>
<td>6.97</td>
<td>−0.97</td>
</tr>
<tr>
<td>P</td>
<td>0.89</td>
<td>1.84</td>
<td>0</td>
<td>2.73</td>
<td>2.27</td>
</tr>
<tr>
<td>Ga</td>
<td>0.54</td>
<td>0.95</td>
<td>9.99</td>
<td>11.48</td>
<td>1.52</td>
</tr>
</tbody>
</table>
The calculated results on the anisotropic optical absorption spectrum, refractive index, reflectivity, and energy-loss spectrum are shown in Figs. 5(a)–5(d). In our calculation, we use Gaussian smearing of 0.5 eV. The optical absorption starts at 3.7 eV for the incident radiation polarized along both the [100/010] and the [001] directions, which corresponds to light with a wavelength of 334 nm, which is close to the 350 nm of the KTiPO4 crystal, a famous nonlinear optical phosphate. Above 3.7 eV, the absorption increases continuously before reaching a maximum. However, the absorption is just 10% of the peak absorption intensity at 5.10 eV (242 nm). Simultaneously, this material has a very low reflectivity over a large range of energy for both types of polarized incident radiation (<0.1 below 5.17 eV, 239 nm). These results indicate that Ga3PO7 is transparent to the light with wavelengths longer than 334 nm. The calculated refractive index is found to be 1.64 at 400 nm along the two directions, [100/010] and [001], which is very close to the ~1.62 of GaPO4, a famous piezoelectric phosphate having the same PO4 tetrahedra in its structure as Ga3PO7. From the similarity of the values of the absorption edges and the refractive indices of these phosphates, it is obvious that these two properties are decided by PO4 anions group. The energy-loss spectrum describes the energy loss of a fast electron traversing the material and is usually large at the plasma energy. Three prominent peaks were found at 13.02, 14.84, and 16.01 eV along the [001] direction, which are consistent with the roots of $\varepsilon_1(\omega)$ and correspond to a rapid reduction in the reflectance.

In summary, we calculated the structural parameters, electronic structures, and optical properties of Ga3PO7 by means of the DFT within GGA. Our structural parameters are in agreement with the experimental data. The electronic structures of Ga3PO7 show that the top of the VB and the bottom of the CB are determined by O 2p and Ga 4p states, respectively. Although the P–O bond shows stronger covalent bonding than the Ga–O bond, both bonds are regarded as covalent, which proves that the existence of the two functional anion groups in Ga3PO7. Anisotropic dielectric and optical properties, including dielectric function, absorption, reflectivity, and energy loss, were calculated and discussed in detail. The results show that Ga3PO7 has potential applications in optoelectric devices.

This work was supported by the Australian Research Council through Discovery Projects (DP0558753 and DP0665873).