2004

Intranasal Vaccination with Streptococcal Fibronectin Binding Protein Sfb1 Fails To Prevent Growth and Dissemination of Streptococcus pyogenes in a Murine Skin Infection Model

Jason D. McArthur
University of Wollongong, jasonm@uow.edu.au

E. Medina
German National Centre for Biotechnology, Germany

J. Chin
Elizabeth Macarthur Agricultural Institute

B. J. Currie
Menzies School of Health Research

K. S. Sriprakash
Queensland Institute of Medical Research

See next page for additional authors

Publication Details

This article was originally published as McArthur, JM et al, Intranasal Vaccination with Streptococcal Fibronectin Binding Protein Sfb1 Fails To Prevent Growth and Dissemination of Streptococcus pyogenes in a Murine Skin Infection Model, *Infection and Immunity*, 72(12), 2004, 7342-7345.

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Intranasal Vaccination with Streptococcal Fibronectin Binding Protein Sfb1 Fails To Prevent Growth and Dissemination of Streptococcus pyogenes in a Murine Skin Infection Model

Abstract
Fibronectin binding protein F1 (Sfb1) of Streptococcus pyogenes (group A streptococcus [GAS]) is a well-characterized adhesin that has been shown to induce protection in mice against a lethal intranasal GAS challenge after intranasal immunization with cholera toxin B subunit (CTB) as adjuvant. With a murine skin infection model, we have shown that Sfb1/CTB vaccination neither elicits opsonizing antibodies nor prevents systemic bacterial growth and dissemination to internal organs after a subcutaneous GAS challenge. These results indicate that an Sfb1-based vaccine should be complemented with additional protective antigens in order to be used in areas such as the tropical north of Australia, where the skin is the primary route of entry for invasive streptococcal diseases.

Keywords
Streptococcus, pyogenes, fibronectin, CMMB

Disciplines
Life Sciences | Physical Sciences and Mathematics | Social and Behavioral Sciences

Publication Details
This article was originally published as McArthur, JM et al, Intranasal Vaccination with Streptococcal Fibronectin Binding Protein Sfb1 Fails To Prevent Growth and Dissemination of Streptococcus pyogenes in a Murine Skin Infection Mode, Infection and Immunity, 72(12), 2004, 7342-7345.

Authors

This journal article is available at Research Online: http://ro.uow.edu.au/scipapers/99
Intranasal vaccination with streptococcal fibronectin binding protein, Sfb1, fails to prevent growth and dissemination of *Streptococcus pyogenes* in a murine skin infection model

Running title: Sfb1 vaccination and GAS dissemination into deeper tissues.

McArthur J¹,⁶, Medina E², Mueller A², Chin J³, Currie BJ⁴,⁵, Sriprakash KS¹,⁴,⁵, Talay SR², Chhatwal GS², Walker MJ⁶*

¹Bacterial Pathogenesis Laboratory, Queensland Institute of Medical Research, Brisbane, Australia
²GBF National Research Centre for Biotechnology, Braunschweig, Germany
³NSW Agriculture, Elizabeth Macarthur Agricultural Institute, Camden Australia
⁴Menzies School of Health Research, Charles Darwin University, Darwin Australia
⁵Co-operative Research Centre for Aboriginal and Tropical Health, Darwin, Australia
⁶Department of Biological Sciences, University of Wollongong, Australia

*Corresponding author: M. J. Walker, Department of Biological Sciences, University of Wollongong, N.S.W. 2522, Australia. Phone: 0061-242-213439. Fax: 0061-242-214135. E-mail: mwalker@uow.edu.au
Abstract

The fibronectin binding protein F1 (Sfb1) of *Streptococcus pyogenes* (group A streptococcus; GAS) is a well characterised adhesin that has been shown to induce protection in mice against lethal intranasal GAS challenge after intranasal immunisation with cholera toxin B-subunit (CTB) as adjuvant. Using a murine skin infection model we have shown that Sfb1/CTB vaccination neither elicits opsonising antibodies nor prevents systemic bacterial growth and dissemination to internal organs after subcutaneous GAS challenge. These results indicate that a Sfb1-based vaccine should be complemented with additional protective antigens in order to be used in areas such as the tropical north of Australia where the skin is the primary route of entry for invasive streptococcal diseases.
Among the Aboriginal population living in the Northern Territory of Australia (NT), the incidence and prevalence of streptococcal infection and streptococcal diseases are high. Unlike in Europe and the United States where the throat is often the primary tissue reservoir, the skin is the major site of infection for the Aboriginal population (12). Rates of group A streptococcal (GAS) skin infection are extremely high, due in part to infection of scabies lesions, with pyoderma prevalence rates in children up to 70% (13). The rate of streptococcal invasive diseases among the Aboriginal population is five times that of the general population with skin infections underlying most cases (5). The incidence of post streptococcal sequelae is also high with rates of acute rheumatic fever in Aboriginal populations amongst the highest reported and acute glomerulonephritis being endemic in many regions (4). Genetic typing of strains causing GAS infection in Aboriginal communities has demonstrated that the diversity and turnover rate of these strains is much higher than those reported in other regions and has revealed no evidence of a dominant clone which has been a common cause of GAS invasive infections elsewhere in the world (3, 6). Vaccination might constitute the most suitable strategy to control GAS infections in these communities.

Bacterial adhesins have been proposed as potential vaccine targets for the prevention of infectious diseases (36). In this regard, Streptococcus pyogenes produce a number of MSCRAMMs (microbial surface components recognising adhesive matrix molecules) that are believed to mediate adhesion of the pathogen to host tissue, a critical step in the initial stages of infection (27). A number of GAS MSCRAMMs capable of binding fibronectin have been identified and include: Protein F1/Sfb1 (16, 31), 28 kDa antigen (9), FBP54 (10), serum opacity factor (21, 28), protein F2 (18), PFBP (29), FbaA (33), FbaB (34) and SfbX (19). This diversity of fibronectin
binding proteins suggests both the importance of fibronectin binding in the pathogenesis of GAS infection and the possibility that these proteins are differentially expressed at different stages of the infection process (17).

GAS fibronectin binding proteins have been suggested as potential vaccine targets for preventing GAS infections (7). Antibodies directed against such adhesins may prevent bacterial attachment and inhibit colonisation (36). Sfb1 is a well characterised fibronectin binding protein of GAS and is believed to mediate bacterial attachment to host cells and internalisation of GAS into nonphagocytic cells (26, 31). Sfb1 has also been shown to interfere with host macrophage mediated clearance mechanisms by binding to the Fc fragment of human immunoglobulins (24). When adjuvanted with cholera toxin B-subunit (CTB), intranasal immunisation with Sfb1 induces protection against intranasal challenge with a lethal dose of GAS (15). Vaccinated mice produce a strong IgG serum antibody response in a Th2-like pattern (30). However, critical to this level of protection is the elicitation of mucosal immunity in the lungs of vaccinated mice. It is believed that this mucosal immune response may prevent *S. pyogenes* from binding to the upper respiratory epithelium thereby preventing colonisation and establishment of infection (36). Other characteristics which make Sfb1 an attractive vaccine candidate are the presence of highly conserved epitopes and the fact that Sfb1 is expressed on the surface of 70% of GAS clinical isolates belonging to different serotypes and strains, independent of geographic origin (14, 32, 35). Anti-Sfb1 antibodies do not cross-react with heart proteins and therefore may not trigger autoimmune reactions that might be responsible for post streptococcal sequelae (35). Although vaccination with Sfb1 conferred protection against mucosal infection with *S. pyogenes*, the question remains whether it
is also protective against systemic spread subsequent to skin infections. The objective of this study was, therefore, to determine whether the immune response generated against Sfb1 was able to confer protection against subcutaneous challenge with *S. pyogenes*.

For this purpose, BALB/c mice were immunised by intranasal inoculation (10 µl/nare) with a mixture containing 30 µg Sfb1 and 10 µg CTB on days 1, 3, 5 and 15 as previously described (15). For the characterisation of the immune response, serum samples, lung washes and spleen samples were collected 14 days after the last booster immunisation. Lung washes were obtained by tracheal cannulation and gentle washing with 0.7 ml of cold PBS containing 2 mM PMSF. To assess the generation of antigen specific effector cells by vaccination, lymphocytes were isolated from the spleens of immunised mice and were restimulated *in vitro* for 3 days in the presence of Sfb1 as previously described (25). Results in Fig. 1A show that intranasal immunisation with Sfb1 elicited a significant serum IgG antibody response to the vaccine antigen when compared to the non-vaccinated control mice (*P*=0.029). As shown in Fig. 1B, immunisation with the Sfb1 also elicited elevated antigen-specific IgA and IgG antibody responses in the lung on day 14 post-vaccination. Spleen cells isolated from mice vaccinated with Sfb1, compared with controls displayed elevated proliferative responses on day 14 post-vaccination (Fig. 1C).

A previously described mouse skin infection model (23) was then used to examine the capacity of the immune response generated after vaccination with Sfb1 to restrain bacterial dissemination from the local infection foci at the skin. For this purpose, groups of Sfb1-vaccinated and non-vaccinated control mice were challenged with a
subcutaneous injection containing 1x10^6 colony forming units (CFU)/100 µl of S. pyogenes strain A20 (M type 23) obtained from the German Culture Collection (DSM 2071), administered into the back on day 14 post-vaccination. At various times after infection mice were sacrificed by CO₂ asphyxiation, their livers and spleen removed, and bacterial loads were determined in homogenates of these organs after plating serial dilutions in blood agar.

The results presented in Figure 2 show that both vaccinated and non-vaccinated mice had comparable rates of systemic bacterial growth and dissemination. Vaccination with Sfb1 had no effect on the growth of S. pyogenes in the blood of challenged mice (Figure 2A) and also failed to limit bacterial dissemination and growth in both the spleen (Figure 2B) and the liver (Figure 2C) in infected animals. By contrast GAS extracts containing other antigens were found to protect against systemic infection in this animal model (Medina, personal communication), thus validating this model system for such vaccination studies.

These results suggest that serum antibodies generated against Sfb1 might be devoid of bactericidal activity against S. pyogenes. To further demonstrate this assumption, a bactericidal assay was performed using serum from mice vaccinated with either PBS, CTB or CTB/Sfb1. Serum obtain from mice immunized with pepsin-extracted M protein (PepM) (12) were used as positive control for the opsonizing assay. Serum samples were mixed with an inoculum of S. pyogenes A20 containing approximately 30 CFU and added to heparinised fresh human blood obtained from a donor known to be non-opsonic for this streptococcal strain. The mixture was rotated for 3 h at 37°C and mean CFU was determined by plating dilutions on blood agar plates. As shown
in Fig. 3, sera from mice vaccinated with PBS, CTB or CTB/Sfb1 failed to inhibit bacterial growth while sera from mice immunized with the PepM extract totally inhibited the growth of *S. pyogenes* A20 (Figure 3). The bactericidal effect of rabbit polyclonal anti-Sfb1 sera was also tested and failed to inhibit bacterial growth. However, this antisera was able to detect Sfb1 in western blots performed to confirm expression of Sfb1 by *S. pyogenes* A20 under the growth conditions used for opsonisation (data not shown).

As GAS produce a number of MSCRAMMs capable of binding to a variety of extracellular matrix components including fibronectin, it is likely that the expression of these proteins is regulated in a coordinated manner during the infection process. It is currently not known if Sfb1 is expressed during colonisation/invasion through the skin. Protective immunity against GAS infection is believed to be via two major mechanisms (11); a) bacteria can be prevented from entering the host by blocking attachment and colonisation at mucosal surfaces and b) once GAS has entered host tissues, infection can be eliminated by opsonisation with specific antibody and complement followed by phagocytosis. It has been reported that immune responses against peptides based on the conserved region of streptococcal M protein confers protective mucosal immunity against colonisation but did not reduce the rate of mortality due to systemic streptococcal infection and are also non-opsonic (2). Similarly, while an IgA response against Sfb1 will protect mice from an intranasal GAS challenge, this study for the first time has shown serum IgG against Sfb1 is not opsonic and does not reduce the growth or dissemination of GAS in a murine skin infection model. Other GAS fibronectin binding MSCRAMMs, SOF and FBP54, have been shown to elicit opsonising antibodies and protect against a systemic IP
GAS challenge (8, 20). This suggests that GAS fibronectin binding MSCRAMMs, and other potential GAS vaccine candidates, should be assessed using both intranasal and systemic GAS infection models. Furthermore it remains to be determined whether the apparent lack of efficacy against skin challenge found in this study is also seen for other vaccine candidates which have looked promising in oral/nasal challenge studies (1).

Despite the presence of high anti-Sfb1 titres in the serum of vaccinated mice, GAS strain A20 was still able to grow and disseminate at a rate comparable to that in naive mice. In the NT, the most common focus of invasive infection is the skin (5). In this population high serum anti-Sfb1 titres are also seen in both Aboriginal controls and Aboriginal patients with defined streptococcal infections (14), and yet this immune response does not offer protection against GAS systemic infection. Together these observations suggest that high anti-Sfb1 titres in serum do not prevent dissemination of GAS into deeper tissues from the skin. The results of this study appear to reflect epidemiological observations in the NT where skin infection predisposes to severe GAS infection despite high IgG antibody titres against Sfb1 in the population (14).

In summary, while an anti-Sfb1 immune response protects against pharyngeal colonization (15, 30), this response is inadequate for protection against systemic infections as a consequence of skin colonization. Thus, while Sfb1 may be a useful vaccine candidate in regions where the throat is the primary site of infection, this antigen may not fulfil such a role in regions where the skin is the primary infection site.
Acknowledgements

This work was supported, in part, by the National Health and Medical Research Council (NHMRC) of Australia.
References

Figure 1: The immune response directed against Sfb1 at 14 days post-immunisation. (A) Specific IgG (solid bar) and IgA (unfilled bar) present in the serum of control and vaccinated mice. Results are expressed as the geometric means of 5 mice per group. Standard error of the mean (SEM) is indicated by vertical bars. (B) Specific antibodies in lung washes of control and vaccinated mice. Results are expressed as the % Sfb1-specific antibodies with respect to total immunoglobulin isotype. SEM is indicated by vertical lines. (C) Sfb1-specific proliferative responses of spleen cells. Results are expressed as the mean counts per minute (CPM) of triplicate samples for 3-4 mice per group. SEM is indicated by vertical lines. The results are statistically significant (Student’s t test) when compared with the values for control mice (P<0.05) (*).

Figure 2: Clearance of *S. pyogenes* A20 from the blood, spleen and liver of mice after subcutaneous challenge with 1x10^6 CFU. Results are expressed as the mean CFU determined for 5 mice per Sfb1-vaccinated mice group (solid line) and PBS-vaccinated control mice group (dashed line). SEM is indicated by vertical lines.

Figure 3: Bactericidal effect against DSM2071 by systemic antibodies. Serum from mice intranasally vaccinated with PBS, CTB, CTB/Sfb1 was mixed with an inoculum of DSM2071 containing approximately 30 CFU, added to heparinised human blood and rotated for 3 h at 37°C. Mean CFU was determined by plating dilutions on blood agar plates. Sera from mice immunised with pepsin extracted M protein from DSM2071 (PepM) was used as a positive control for the assay. The opsonic effect of rabbit polyclonal anti-Sfb1 sera was also assessed.
A

Anti-Sfb1 titre

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>CTB/Sfb1</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

Sfb1 specific antibodies in lung washes (% of total Ig)

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>CTB/Sfb1</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

CPM

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>CTB/Sfb1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A
Blood

B
Spleen

C
Liver