2008

Intention-driven textual semantic analysis

Jie Li

University of Wollongong

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following.

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author.

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Recommended Citation

NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Intention-driven Textual Semantic Analysis

A thesis submitted in partial fulfillment of the requirements for the award of the degree

Master of Computer Science

from

UNIVERSITY OF WOLLONGONG

by

Jie Li

School of Computer Science and Software Engineering

July 2008
Dedicated to

This thesis is dedicated to my mom and dad.
Declaration

This is to certify that the work reported in this thesis was done by the author, unless specified otherwise, and that no part of it has been submitted in a thesis to any other university or similar institution.

Jie Li
July 18, 2008
Abstract

The explosion of World Wide Web has brought endless amount of information within our reach. In order to take advantage of this phenomenon, text search becomes a major contemporary research challenge. Due to the nature of the Web, assisting users to find desired information is still a challenging task. In this thesis, we investigate semantic analysis techniques which can facilitate the search process at semantic level. We also study the problem that short queries are less informative and difficult to convey the user’s intention into the search service system. We propose a generalized framework to address these issues. We conduct a case study of movie plot search in which a semantic analyzer seamlessly works with a user’s intention detector. Our experimental results show the importance and effectiveness of intention detection and semantic analysis techniques.
I wish to express my appreciation and gratitude to the thesis supervisors Dr. Jo Abrantes and Prof. Philip Ogunbona for their guidance and encouragement throughout the course of this research work. Dr. Jo Abrantes introduced me into the field of machine learning and offered me the chance to deepen my research. Prof. Philip Ogunbona gave me a lot of constructive suggestions and ideas. Especially they gave me as much freedom as I needed to get my research work done.

I gratefully thank my parents for their support. Without their understanding, encouragement and financial support, this particular goal would not have been achieved.
Contents

Abstract v

Acknowledgements vi

1 Introduction 7

1.1 Motivation 7

1.2 Contributions 13

1.3 Organization of the thesis 14

2 Literature Review 16

2.1 Introduction 16

2.2 Overview of Search Service Models 18

2.2.1 The Boolean Model 19

2.2.2 The Vector Space Model 19

2.2.3 Probabilistic Models 22

2.2.4 The Link Analysis Models 22

2.3 Semantic Analysis Techniques 23
2.3.1 Explicit Semantic Analysis .. 24
2.3.2 Latent Semantic Analysis ... 26
2.4 Some Related Techniques In Search Services 31
 2.4.1 Relevance Feedback ... 31
 2.4.2 Filtering Technique ... 32
 2.4.3 Question-Answering System 32
 2.4.4 Text Classification ... 33
2.5 Chapter Summary .. 36

3 Intention Detector Construction 37
 3.1 Introduction .. 37
 3.2 Determination of Type of User Intentions 40
 3.3 Detection of the State of the Specific User Intention 41
 3.4 The Simplified Intention Detector 45
 3.5 Selection Of Feature Words 47
 3.6 Chapter Summary .. 49

4 A Case Study Of Movie Plot Search 50
 4.1 Introduction .. 50
 4.2 Query Parser ... 51
 4.3 Movie Plots Tagger ... 52
 4.4 Movie Plot Index Builder .. 52
 4.4.1 Tokenization and Stopword Removal 53
 4.4.2 Stemming .. 53
List of Tables

5.1 One Experiment for Two Small Document Collections 63
5.2 The Term-document Matrix 63
5.3 Top Ten Most Representative Words 78
5.4 Find Most Related Words Via Jiang’s Method 80
5.5 Find Most Related Words Via Lin’s Method 81
List of Figures

1.1 The Search Processing 9

2.1 The Link Structure of World Wide Web 23

2.2 The Process of Latent Semantic Analysis 29

3.1 User Intention Detection Procedure 39

3.2 Illustration of Determination of Type of User Intentions 40

3.3 Illustration of First Order Hidden Markov Chain for Prediction 42

3.4 Illustration of Independent Node Model for Prediction 43

3.5 Illustration of Second Order Hidden Markov Chain for Prediction 44

3.6 Illustration of the Simplified Intention Detector 46

3.7 Illustration of Keywords Representation of the Simplified Intention Detector ... 47

4.1 Architecture of Intelligent Search Service System 51

4.2 Architecture of Search Service 54

4.3 Illustration of the Simplified Intention Detector 55
5.1 Visualization of Latent Semantic Analysis .. 64
5.2 The Initial Search User Interface .. 67
5.3 The Concept Search Results ... 69
5.4 The Topic Search Results .. 70
5.5 The Content Search Results ... 71
5.6 The Content Search Results ... 72
5.7 The Precision and Recall .. 74
5.8 The Precision and Recall Results ... 75