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Hormone-induced spawning of the critically endangered northern
corroboree frog Pseudophryne pengilleyi

Abstract
Fundamental knowledge of the optimal hormone concentrations required to stimulate amplexus and
spawning in breeding pairs of amphibians is currently lacking, hindering our understanding of the proximate
mechanisms underpinning mating behaviour. The present study investigated the effects of: (1) the dose of a
gonadotropin-releasing hormone analogue (GnRH-A) administered; (2) male-female hormone
administration interval; and (3) topical application of GnRH-A, on spawning success in the northern
corroboree frog. Administration of GnRH-A at doses of 0.5, 1.0 and 2.0 μg g-1were highly successful, with a
significantly greater proportion of hormone-Treated pairs ovipositing (89-100%) compared with the 0 μg
g-1treatment (22%). Of the hormone-Treated pairs, those receiving 0.5 μg g-1GnRH-A exhibited the highest
fertilisation success (61%). Administration of GnRH-A to males and females simultaneously (0 h) was more
effective than injecting males either 48 or 24 h before the injection of females. Overall, administration of
GnRH-A was highly successful at inducing spawning in northern corroboree frogs. For the first time, we also
effectively induced spawning following the topical application of GnRH-A to the ventral pelvic region. Topical
application of GnRH-A eliminates the need for specialised training in amphibian injection, and will allow
assisted reproductive technologies to be adopted by a greater number of captive facilities globally.
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 34 

Abstract  35 

Fundamental knowledge of the optimal hormone concentrations required to stimulate 36 

amplexus and spawning in breeding pairs of amphibians is currently lacking, hindering our 37 

understanding of the proximate mechanisms underpinning mating behaviour. The present 38 

study investigated the effects of: 1) GnRH-a dose, 2) male:female hormone administration 39 

interval, and 3) topical application of Gonadotropin-releasing hormone analogue (GnRH-a), 40 

on spawning success in the Northern Corroboree Frog. Administration of GnRH-a at doses of 41 

0.5, 1.0, and 2.0 μg/g were highly successful, with a significantly greater proportion of 42 

hormone-treated pairs ovipositing (89 -100%) compared to the 0 μg/g treatment (22%). Of 43 

the hormone-treated pairs, those receiving 0.5 μg/g exhibited the highest fertilisation success 44 

(61%). Administration of GnRH-a to males and females simultaneously (0hrs) was more 45 

effective than injecting males at either 48 or 24 hrs prior to the injection of females. Overall, 46 

administration of GnRH-a was highly successful at inducing spawning in Northern 47 

Corroboree Frogs. For the first time, we also effectively induced spawning following the 48 

topical application of GnRH-a to the ventral pelvic region. Topical application of GnRH-a 49 

eliminates the need for specialised training in amphibian injection, and will allow assisted 50 

reproductive technologies to be adopted by a greater number of captive facilities globally. 51 

 52 
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 69 

Introduction 70 

Advances in assisted reproductive technologies (ARTs) have markedly improved the 71 

efficiency and sustainability of agricultural animal production. More recently, the value of 72 

ARTs for endangered species recovery has been recognised in order to overcome the 73 

behavioural impediments to natural mating and fertilisation that captive animals often 74 

encounter (Durrant 2009). Recent reports confirm that we are already amidst a sixth mass 75 

extinction (Ceballos et al. 2015), with numerous conservation breeding programs established 76 

for threatened species globally. These programs aim to maintain genetically viable insurance 77 

colonies ex situ, while also providing individuals for population augmentation, translocation 78 

and reintroduction in situ. Despite considerable efforts to mimic natural environmental cues, 79 

many amphibian conservation breeding programs continue to face difficulties reliably and 80 

predictably initiating breeding behaviour in captivity (Kouba et al. 2009). This deficiency 81 

threatens the genetic viability of insurance colonies and has limited the generation of large-82 

numbers of individuals for release. Assisted reproductive technologies, such as the hormonal 83 

induction of spawning, gamete-release and artificial fertilisation, have the potential to 84 

contribute to amphibian conservation by enhancing species propagation, synchronizing 85 

breeding events and permitting greater control over the genetic management of insurance 86 

colonies. 87 

 Exogenous reproductive hormones have been used to successfully induce spawning 88 

and gamete-release in a number of anuran (frog and toad) and urodele (newt and salamander) 89 

species (Byrne and Silla 2010; Mansour et al. 2011; Silla 2011; Trudeau et al. 2013; 90 

Calatayud et al. 2015; Uteshev et al. 2015; Della Togna et al. 2017). The two hormones most 91 

commonly employed are human chorionic gonadotropin (hCG) and gonadotropin- releasing 92 

hormone (GnRH, also known as luteinizing hormone- releasing hormone; LHRH). The 93 

administration of purified hCG mimics the luteinizing hormone (LH) surge required to 94 

stimulate final gamete maturation and release (hypophyseal approach; Vu and Trudeau 2016). 95 

For most amphibian species, hCG is less effective, and may reflect species specificity in LH- 96 

receptor affinities (Silla and Roberts 2012). In contrast, synthetic GnRH-a is structurally 97 

similar to the GnRH-1 molecule found in the anterior pre-optic area of the hypothalamus and 98 

the median eminence of the amphibian brain (Vu and Trudeau 2016). GnRH-a acts by 99 

stimulating the anterior pituitary gland to synthesise and release natural LH (hypothalamic 100 

approach; Vu and Trudeau 2016). Administration of GnRH-a has been shown to effectively 101 
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stimulate ovulation and spermiation in a diversity of anurans in the absence of a mating 102 

partner (Michael et al. 2004; Silla 2010; Silla 2011; Silla and Roberts 2012; Jacobs et al. 103 

2016). By contrast, the ability of GnRH-a to elicit mating behaviour, and in particular the 104 

optimal doses required to stimulate amplexus and spawning, has seldom been tested 105 

empirically, hindering our understanding of the proximate mechanisms underpinning mating 106 

behaviour in amphibians.  107 

 The administration of GnRH-a is typically achieved via intraperitoneal or 108 

subcutaneous injection. However, amphibians also afford a unique opportunity to develop 109 

methods for the topical application of exogenous hormones (epicutaneous administration) due 110 

to their highly permeable, hypervascularised skin surfaces. The ability to induce spermiation 111 

through the topical application of GnRH-a has previously been tested in American Toads 112 

(Bufo americanus) and Gulf Coast Toads (Incilius valliceps), with varying degrees of success 113 

(Obringer et al. 2000; Rowson et al. 2001). To date, no attempt has been made to employ 114 

these protocols to induce ovulation or spawning in amphibians. Refining protocols for the 115 

topical application of GnRH-a would be of enormous benefit to amphibian conservation 116 

because it would eliminate the need for specialised training in amphibian injection and allow 117 

ARTs to be adopted by a greater number of captive facilities. 118 

The northern corroboree frog (Pseudophryne pengilleyi) is considered one of 119 

Australia’s most threatened vertebrates, listed as Critically Endangered by state and federal 120 

governments, and Endangered by the IUCN (McFadden et al. 2016). The species has been 121 

the focus of an intensive captive breeding and reintroduction program since 2003, established 122 

as a partnership between the Taronga Conservation Society Australia (TCSA), Tidbinbilla 123 

Nature Reserve and the NSW Office of Environment and Heritage (OEH) (McFadden et al. 124 

2016). Although northern corroboree frogs have been bred successfully in captivity for a 125 

number of years, a proportion of gravid females fail to spawn annually, reducing the 126 

reproductive potential of captive colonies. Additionally, captive populations display strong 127 

mating biases with less than a third of available males contributing to mating success. Over 128 

time, such captive mating biases may lead to a loss of genetic variation and adaptive potential 129 

that could compromise re-introduction success.  130 

The present study aimed to empirically test protocols to hormonally induce spawning 131 

behaviour in the critically endangered northern corroboree frog, Pseudophryne pengilleyi. 132 

Specific objectives were to investigate: 1) the effect of GnRH-a dose, 2) the effect of 133 

male:female hormone administration interval, and 3) the effect of topical application of 134 
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GnRH-a, on spawning success. The percentage of pairs ovipositing, number of eggs 135 

oviposited, and percentage fertilisation were determined for each experiment. 136 

 137 

 138 

Methods 139 

Ethics Statement 140 

All procedures were conducted following evaluation and approval by the Taronga 141 

Conservation Society Australia’s Animal Ethics Committee (protocol numbers 3b/08/14 and 142 

3a/11/16).  143 

 144 

Study Species 145 

The northern corroboree frog (Pseudophryne pengilleyi) is a small (25-30mm snout-vent 146 

length), terrestrial frog easily recognised by longitudinal black and lime-green/yellow dorsal 147 

colouration (Figure 1a). The species is restricted to areas above 850m altitude in the 148 

Brindabella and Fiery ranges of New South Wales and the Australian Capital Territory in 149 

south-eastern Australia. The region experiences an average annual rainfall of 1,200 mm and 150 

snowfall at higher elevations during winter. Breeding in this species commences in late 151 

austral summer and continues until early autumn. Male P.pengilleyi construct shallow 152 

terrestrial nests in isolated frost-hollow grasslands, narrow seeps, and open bogs that are 153 

subject to seasonal inundation (Osborne 1991; Scheele et al. 2017). Females oviposit a small 154 

clutch of between 16 - 40 eggs (mean = 24.0, Osborne 1991), though captive females have 155 

been recorded ovipositing up to 59 eggs (range = 17 - 59, mean = 35.90 ± 1.01, n=79; 156 

unpublished data). Fertilised eggs undergo intracapsular embryonic development, which is 157 

typically suspended at Gosner Stage 26–28. In the field, terrestrial embryos may remain in 158 

suspended development for several weeks until heavy autumn rainfall floods the nest and 159 

hypoxia triggers tadpoles to hatch into temporary pools (Osborne 1991). This reproductive 160 

mode (terrestrial egg mass with aquatic free-living larvae) is characteristic of the majority of 161 

species in the genus Pseudophryne (Watson and Martin 1973). 162 

 163 

Animal husbandry  164 

Northern corroboree frogs were maintained in an isolated, biosecurity facility located at 165 

Taronga Zoo, Mosman, NSW, Australia. Internal lighting within the facility was controlled 166 

using a weatherproof light sensitive switch (HPM, NSW, Australia) set to simulate local 167 
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photoperiod. Lighting was provided using fluorescent tubes (10.0 UV-B, Reptisun, Germany) 168 

suspended approximately 36cm above each shelf, resulting in 20–30 µW / cm
2
 UV-B at the 169 

substrate floor of each enclosure. Ambient temperature within the facility was cycled 170 

annually to reflect seasonal changes in the average climatic conditions experienced in the 171 

subalpine areas where the species naturally occurs. Temperatures ranged from 5 - 20 ̊C, 172 

including a 6-week hibernation period. Programmed temperatures were at a maximum during 173 

the breeding season, when frogs were maintained on a 20 ̊C/ 17 ̊C day/ night temperature 174 

cycle. Outside of the breeding season, male and female northern corroboree frogs were 175 

communally housed in same sex groups in ventilated, clear plastic terraria (28cm L × 17cm 176 

W × 18cm H; 4-6 individuals per. terrarium). Each terrarium contained a layer of aquarium 177 

gravel (particle size ~4 mm) approximately two cm deep, in addition to a layer of hydrated 178 

sphagnum moss approximately 5 cm deep covering half of the enclosure floor. Holes (3 mm 179 

D) were drilled in the base of each terrarium for drainage. Enclosure substrates were sprayed 180 

with reverse osmosis (RO) water twice weekly to break down and remove excrement and 181 

detritus. Frogs were fed a diet of 6-9 day old hatchling crickets (Acheta domestica; 15–20 182 

crickets per. individual) once every five days. Crickets were dusted with calcium powder 183 

(Calcium with Vit. D3, Rep-Cal Research Labs, United States) prior to every feed and a 184 

multivitamin supplement (Herptivite, Rep-Cal Research Labs, United States) every alternate 185 

feed. 186 

 187 

Experiment 1: The effect of GnRH-a dose on spawning success 188 

To determine the effect of GnRH-a dose on spawning success, 36 male-female pairs were 189 

allocated to one of four experimental treatments; 0.0, 0.5, 1.0, or 2.0 μg/gram body weight 190 

GnRH-a (Leuprorelin acetate; Lucrin®)(n=9 pairs per treatment). All frogs were sexually 191 

mature (5-11 years of age) and ranged in weight from 1.39 – 4.00 grams. The male/female 192 

body mass ratio of each pair ranged from 53.82 – 74.52 % (mean ± sem = 61.12 ± 0.89) and 193 

the body mass of males and females did not differ significantly between treatment groups 194 

(one-way ANOVA male mass: F 3,32 = 0.042, p = 0.988;  female mass: F 3,32 = 0.676, p = 195 

0.573). 196 

One week prior to hormone administration, males were removed from communal housing 197 

and moved into individual terraria (28cm L × 17cm W × 18cm H) containing substrates as 198 

described above (see section 2.3 Animal husbandry). This was done in order to provide each 199 
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male with the opportunity to establish a nest site prior to introducing the female. Individuals 200 

within each male-female pair were weighed and administered a single hormone dose 201 

corresponding to their experimental treatment. Hormones were diluted in 100 μL of 202 

Simplified Amphibian Ringer (SAR; 113 mM NaCl, 2 mM KCl, 1.35 mM CaCl2, 1.2 mM 203 

NaHCO3) and administered via subcutaneous injection into the dorsal lymph sac (Figure 1b). 204 

Three weeks after hormone administration, terraria were searched for the presence of eggs, 205 

and the number of eggs oviposited, and fertilisation success, scored. In the absence of eggs, 206 

the male-female pair was categorised as unresponsive. Experiment 1 was conducted from 207 

April 10 to May 8, 2014.  208 

 209 

Experiment 2: The effect of male:female hormone administration interval on spawning 210 

success 211 

To determine the effect of hormone administration interval on spawning success, males were 212 

administered GnRH-a at one of three time periods (48, 24, or 0 hrs) prior to the 213 

administration of GnRH-a to females (27 male-female pairs, n=9 per treatment). All frogs 214 

were sexually mature (5-12 years of age) and ranged in weight from 1.34 – 3.90 grams. The 215 

male/female body mass ratio of each pair ranged from 48.20 – 68.83 % (mean ± sem = 56.56 216 

± 0.87) and the body mass of males and females did not differ significantly between 217 

treatment groups (one-way ANOVA male mass: F 2,24 = 0.021, p = 0.979;  female mass: F 2,24 218 

= 0.191, p = 0.827). 219 

One week prior to hormone administration, males were removed from communal housing 220 

and moved into individual terraria (28cm L × 17cm W × 18cm H) containing substrates as 221 

described above (see section 2.3 Animal husbandry). Males were removed from their 222 

enclosures, weighed and administered a single dose of 0.5 μg/g GnRH-a either 48, 24, or 0 223 

hrs prior to the introduction of freshly injected females. As with the males, all females 224 

received a single injection of 0.5 μg/g GnRH-a (diluted in 100 μL of SAR) administered via 225 

subcutaneous injection into the dorsal lymph sac (Figure 1b). Three weeks after hormone 226 

administration, terraria were searched for the presence of eggs, and the number of eggs 227 

oviposited, and fertilisation success, scored. In the absence of eggs, the male-female pair was 228 

categorised as unresponsive. Experiment 2 was conducted from March 31 to April 27, 2015.  229 

 230 
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Experiment 3: The effect of topical application of GnRH-a on spawning success 231 

To determine the effect of topical application of GnRH-a on spawning success, 37 male-232 

female pairs were allocated to one of three experimental treatments (n=11-13 pairs per 233 

treatment; 0, 25 or 50 μg/g GnRH-a). All frogs were sexually mature (5-14 years of age) and 234 

ranged in weight from 1.45 – 4.39 grams. The male/female body mass ratio of each pair 235 

ranged from 46.47 – 72.09 % (mean ± sem = 54.54 ± 0.84) and the body mass of males and 236 

females did not differ significantly between treatment groups (one-way ANOVA male mass: 237 

F 2,33 = 0.177, p = 0.839;  female mass: F 2,33 = 0.215, p = 0.808). 238 

As with experiments 1 and 2 detailed above, male frogs were removed from communal 239 

housing and moved into individual terraria (28cm L × 17cm W × 18cm H) one week prior to 240 

the introduction of females. Individuals within each male-female pair were weighed and 241 

administered a single hormone dose corresponding to their experimental treatment (0, 25 or 242 

50 μg/g GnRH-a; n= 11, 13 and 13, respectively). Hormones were diluted in 100 μL of 243 

distilled water and administered dermally via drop-wise topical application onto the ventral 244 

abdominal surface (Figure 1c). Three weeks after hormone administration, terraria were 245 

searched for the presence of eggs, and the number of eggs oviposited, and fertilisation 246 

success, scored. In the absence of eggs, the male-female pair was categorised as 247 

unresponsive. Experiment 3 was conducted from March 23 to April 20, 2017. 248 

 249 

Statistical Analyses 250 

The numbers of male-female pairs ovipositing were compared between treatment groups in 251 

each experiment using two-tailed Fisher’s exact tests. One-way analyses of variance 252 

(ANOVAs) were used to test for statistical differences in the mean number of eggs oviposited 253 

or percent fertilisation, between experimental treatments. Comparisons among treatment 254 

means were conducted using Tukey-Kramer Honestly Significant Difference (HSD) post hoc 255 

tests. To verify homogeneity of variances, Levene’s tests were performed. If variances were 256 

unequal, Kruskal-Wallis tests (KW) were conducted, and post hoc treatment comparisons 257 

were made using Wilcoxon matched-pair tests. All statistical analyses were performed using 258 

JMP Pro 11.0.0 software package (SAS Institute Inc. North Carolina, USE). For all analyses, 259 

statistical significance was accepted at P < 0.05. 260 

 261 
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 262 

Results 263 

Experiment 1: The effect of GnRH-a dose on spawning success 264 

The number of male-female pairs ovipositing in response to the administration of 0.5, 1.0, or 265 

2.0 μg/g GnRH-a was significantly greater than the number of pairs ovipositing in response 266 

to the 0 μg/g GnRH-a treatment (no hormone stimulation)( Fisher’s Exact Tests, P < 0.05; 267 

Table 1). Similarly, the total number of eggs laid in response to GnRH-a differed 268 

significantly among dose treatments (one-way ANOVA, F 3,32 = 7.186, p = 0.0008), with 269 

pairs receiving 0.5, 1.0, or 2.0 μg/g GnRH-a producing a significantly greater number of eggs 270 

than pairs receiving  0.0 μg/g GnRH-a (Tukey-Kramer HSD, P < 0.05; Table 1). Percent 271 

fertilisation was calculated for all pairs that oviposited. Overall, mean percent fertilisation 272 

also differed significantly among treatment groups (Kruskal Wallice test, χ
2
= 9.051, p = 273 

0.0286), with percent fertilisation significantly higher in the 0.0 μg/g GnRH-a dose treatment 274 

compared with the 1.0 and 2.0 μg/g dose treatments (Tukey-Kramer HSD, P < 0.05; Table 1). 275 

Mean percent fertilisation of clutches in the 0.5 μg/g GnRH-a dose treatment was not 276 

significantly different from any of the remaining doses (0.0, 1.0 & 2.0 μg/g GnRH-a; Tukey-277 

Kramer HSD, P > 0.05; Table 1). 278 

 279 

Experiment 2: The effect of male:female hormone administration interval on spawning 280 

success 281 

Hormone administration interval did not significantly effect the number of pairs that 282 

oviposited (Fisher’s Exact Tests, P >0.05), or the number of eggs laid (Kruskal Wallice test, 283 

χ
2
= 0.621, p = 0.733; Table 2). Similarly, mean percent fertilisation did not differ 284 

significantly among treatment groups (Kruskal Wallice test, χ
2
= 5.584, p = 0.0613; Table 2). 285 

However, Wilcoxon matched-pair post-hoc tests indicated that mean percent fertilisation was 286 

significantly higher in the 0-hr treatment compared to 24-hrs (64% and 25%, respectively; 287 

Table 2). 288 

 289 

Experiment 3: The effect of topical application of GnRH-a on spawning success 290 
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The number of male-female pairs ovipositing in response to the topical administration of 25 291 

μg/g GnRH-a was significantly greater than the number of pairs ovipositing in response to the 292 

0 μg/g GnRH-a dose treatment (Fisher’s Exact Test, P = 0.0377). In contrast, the number of 293 

pairs ovipositing in response to 50 μg/g GnRH-a, was not significantly different from either 294 

the 0 μg/g or 25 μg/g dose treatments (Fisher’s Exact Tests, P < 0.05; Table 3). Similarly, the 295 

number of eggs laid in response to GnRH-a differed significantly among dose treatments 296 

(one-way ANOVA, F 2,34 = 3.540, p = 0.040), with pairs receiving 25 μg/g GnRH-a 297 

producing a significantly greater number of eggs than the 0 μg/g GnRH-a dose treatment 298 

(Tukey-Kramer HSD, P < 0.05; Table 3). The number of eggs laid in response to the topical 299 

administration of 50 μg/g GnRH-a was not significantly different from either the 0 μg/g or 25 300 

μg/g dose treatments (Tukey-Kramer HSD, P > 0.05; Table 3). Percent fertilisation was 301 

calculated for all pairs that oviposited, with mean percent fertilisation statistically similar 302 

among treatment groups (one-way ANOVA, F 2, 18 = 0.517, p = 0.605; Table 3). 303 

 304 

Discussion 305 

Assisted reproductive technologies have enormous potential to enhance captive breeding and 306 

reintroduction programs by improving species propagation and permitting greater control 307 

over the genetic management of insurance colonies. To date empirical studies have 308 

predominantly focused on quantifying the effects of exogenous hormone administration on 309 

gamete-release in individuals (in the absence of a mating partner), as a precursor to gamete-310 

storage and artificial fertilisation (AF, also known as in vitro fertilisation, IVF) (Browne et al. 311 

2006; Byrne and Silla 2010; Silla 2011; Silla 2013; Uteshev et al. 2015; Della Togna et al. 312 

2017). Fundamental knowledge of the optimal hormone concentrations required to stimulate 313 

amplexus and spawning in breeding pairs of amphibians is substantially lacking by 314 

comparison, hindering our understanding of the proximate mechanisms underpinning mating 315 

behaviour in amphibians. In the present study we aimed to empirically test protocols to 316 

hormonally induce spawning behaviour in the critically endangered northern corroboree frog. 317 

Specifically, we investigated the effects of 1) GnRH-a dose, 2) male:female hormone 318 

administration interval, and 3) topical application of GnRH-a, on spawning success.  319 

 Results from this study showed that the administration of GnRH-a at doses of 0.5 320 

μg/g, 1 μg/g, and 2 μg/g body weight were highly successful at inducing spawning, with a 321 

significantly greater proportion of hormone treated pairs ovipositing (72 -100%) compared to 322 
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pairs in the 0 μg/g GnRH-a dose treatment (22%). Our results are consistent with those of 323 

previous studies on northern leopard frogs (Lithobates pipiens) that report a significant 324 

increase in the spawning success of hormone treated frogs (42 -100% and 88 -89%, 325 

respectively) compared with untreated animals, which failed to spawn (Trudeau et al. 2010; 326 

Trudeau et al. 2013). Similar findings have also been reported in captive rocky mountain 327 

boreal toads (Anaxryus boreas boreas), where hormone administration effectively doubled 328 

the proportion of spawning pairs (from 17% to 33%) (Calatayud et al. 2017). Interestingly, 329 

previous studies inducing spawning in amphibians have all administered GnRH-a in 330 

combination with other reproductive hormones, including hCG and dopamine antagonists 331 

(metoclopramide, pimozide & domperidone) (Trudeau et al. 2010; Trudeau et al. 2013; 332 

Calatayud et al. 2017). The present study is the first to demonstrate that GnRH-a alone can 333 

induce 100% of male-female pairs to spawn at doses of either 0.5 or 2 μg/g and highlights the 334 

importance of establishing dose- response curves for individual hormones. 335 

 The fertilisation success of clutches oviposited in the present study also differed 336 

significantly according to the GnRH-a dose administered. Male-female pairs in the 0 μg/g 337 

GnRH-a dose treatment exhibited the greatest percentage fertilisation (97%), however it is 338 

important to note that only two pairs oviposited and the fertilisation success of untreated 339 

animals may vary with additional replication. Of the hormone treated pairs ovipositing (n=8-340 

9 per treatment), those injected with 0.5 μg/g GnRH-a exhibited the greatest percentage 341 

fertilisation (61%), while frogs in the higher dose treatments (1 & 2 μg/g GnRH-a) displayed 342 

low mean fertilisation success (< 22%). One explanation for the reduced fertilisation success 343 

observed in the higher dose treatments is that oocytes underwent a process of over-ripening. 344 

Over-ripening results from the aging and deterioration of oocytes retained for an extended 345 

period within the coelomic cavity of a female post ovulation (Bromage et al. 1994; Silla 346 

2011). Oocyte over-ripening may have occurred in the higher dose treatments if oocyte 347 

maturation and ovulation was stimulated too quickly, resulting in the retention of oocytes 348 

prior to amplexus and fertilisation. This explanation is consistent with the observation that 349 

embryos oviposited within the higher dose treatments were often scattered or clumped in 350 

small groups rather than deposited in a discrete, well-defined nest.  351 

Interestingly, amphibian species appear to vary considerably in their sensitivity to 352 

GnRH-a administration (Silla and Roberts 2012), despite the general conservation of the 353 

structure and function of GnRH among vertebrates (Gore 2002). If doses of GnRH-a 354 

administered are too low for a given species, they may induce the upregulation of GnRH -355 

receptors without a corresponding change in LH synthesis and release (Conn 1986; Gore 356 
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2002), resulting in incomplete oocyte maturation, reduced spawning rates and/or fertilisation 357 

success. As GnRH-a doses administered are increased, nearing optimal concentrations, up-358 

regulation of GnRH receptors continues, receptor numbers are elevated and the tissue 359 

responds with the LH surge required to stimulate final oocyte maturation and ovulation 360 

(Conn 1986; Gore 2002). If optimal GnRH-a doses are exceeded, oocyte over-ripening may 361 

occur resulting in a reduction of oocyte quality and diminished fertilisation success (Silla 362 

2011). Interspecific variation in the comparative efficacy of GnRH administration, and 363 

therefore optimal dose, is unlikely to be driven by species-specific differences in the structure 364 

of natural GnRH, as the amino acid sequences of these molecules are highly conserved across 365 

all vertebrate species (Gore 2002). However, given the phylogenetic diversity of anurans and 366 

the diversity of reproductive modes they exhibit, it is reasonable to expect interspecific 367 

variance, not in the GnRH molecules themselves, but in the timing and concentration of 368 

GnRH released. Gaining knowledge of the optimal GnRH doses required to stimulate 369 

amplexus and spawning across a diversity of species will therefore further our understanding 370 

of the evolution of the proximate mechanisms controlling mating behaviour in amphibians. 371 

An alternative approach to the injection of GnRH-a is the epicutaneous administration 372 

of the hormone directly to the ventral abdominal skin surface (topical application). The 373 

topical application of GnRH-a was initially tested in male American toads to induce 374 

spermiation with poor success (22% spermiation response)(Obringer et al. 2000). However, 375 

further protocol refinement using higher hormone doses led to the successful induction of 376 

spermiation in both American toads and gulf coast toads (75% spermiation response) 377 

(Rowson et al. 2001). The present study tested for the first time the efficacy of GnRH-a 378 

applied topically to the ventral abdominal surface of male and female frogs to induce 379 

spawning. Topical administration protocols were highly successful, with 77% of male-female 380 

pairs ovipositing in response to a dose of 25 μg/g GnRH-a. This is the first demonstration that 381 

topical application of reproductive hormones can induce spawning in an amphibian. 382 

Amphibians possess highly vascularised, permeable ventral pelvic surfaces that enable the 383 

rapid absorption of water and low molecular weight compounds (Toledo and Jared 1993). 384 

This is particularly true for terrestrial amphibians, which exhibit a greater intensity of 385 

cutaneous vascularisation in the pelvic region compared with aquatic species (Toledo and 386 

Jared 1993), making them ideal candidates for the topical application of reproductive 387 

hormones. 388 

Incorporating ARTs into existing conservation breeding programs has the potential to 389 

enhance species propagation, allow the synchronisation of breeding events, and increase 390 
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genetic diversity and adaptive potential of the offspring generated. Furthermore, 391 

incorporating ARTs enables better control over breeding designs and provides an opportunity 392 

for selective breeding of particular genotypes. As a result, ARTs are being increasingly 393 

employed by captive facilities to compliment traditional breeding methods and enhance 394 

species recovery (Silla et al. 2015). At present, a vast number of CBPs for threatened 395 

amphibians are yet to benefit from the implementation of ARTs. One reason for this is that a 396 

disproportionate number of threatened amphibian species originate from developing countries 397 

within Neotropical, Afrotropical and Indomalayan regions (collectively harbouring >82% of 398 

rapidly declining amphibians)(Stuart et al. 2004). CBPs in these locations often have limited 399 

resources and lack veterinary capacity or personnel with expertise in amphibian injection. 400 

The topical hormone administration protocols developed in the present study have enormous 401 

potential to increase the number of captive facilities globally adopting ARTs. Such cost 402 

effective protocols that eliminate the need for specialised training (such as animal injection or 403 

gamete-collection) are urgently needed to assist amphibian species recovery.  404 

 405 

Conclusions 406 

Assisted reproductive technologies have enormous potential to contribute to amphibian 407 

conservation breeding programs by increasing species propagation, synchronizing breeding 408 

events and permitting greater control over the genetic management of insurance colonies. 409 

 Here we demonstrate that GnRH-a can be effectively used to induce spawning in the 410 

critically endangered northern corroboree frog, with 100% of male-female pairs ovipositing 411 

in response to an optimal dose of 0.5 μg/g. In a world first, we also effectively induced 412 

spawning following the topical application of GnRH-a to the ventral pelvic region. Topical 413 

application of reproductive hormones eliminates the need for specialised training in 414 

amphibian injection. Refinement of these protocols will therefore allow ARTs to be adopted 415 

by a greater number of captive facilities globally to enhance threatened species recovery.  416 

 417 
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Figure and table captions 565 

 566 

Figure one: A) adult northern corroboree frog, P. pengilleyi; B) subcutaneous injection of reproductive 567 
hormones into the dorsal lymph sac; C) topical administration of reproductive hormones onto the 568 
ventral abdominal surface. 569 

 570 

Table one: The effect of GnRHa dose on spawning success.  571 

Data shown are the number of pairs ovipositing/total number of pairs, or mean ± SEM (n=9 per. treatment). Data 572 
were analysed using Fisher’s Exact Tests (pairs ovipositing), one-way ANOVA (total eggs) or Kruskal Wallice 573 
Test (percent fertilisation). Letters displayed are the result of post-hoc tests. Within a row, treatments that share a 574 
letter are not significantly different (P>0.05). See methods for details of all statistical analyses. 575 

 576 

 577 

Table two: The effect of injection interval between the administration of GnRHa to males and females 578 
on spawning success.  579 

Data shown are the number of pairs ovipositing/total number of pairs, or mean ± SEM (n=9 per. treatment). Data 580 
were analysed using Fisher’s Exact Tests (pairs ovipositing), or Kruskal Wallice Tests (total eggs, percent 581 
fertilisation). Letters displayed are the result of post-hoc tests. Within a row, treatments that share a letter are not 582 
significantly different (P>0.05). See methods for details of all statistical analyses. 583 

 584 

 585 

Table three: The effect of topical application of GnRHa on spawning success.  586 

Data shown are the number of pairs ovipositing/total number of pairs, or mean ± SEM (n=11-13 per. treatment). 587 
Data were analysed using Fisher’s Exact Tests (pairs ovipositing), or one-way ANOVAs (total eggs, percent 588 
fertilisation). Letters displayed are the result of post-hoc tests. Within a row, treatments that share a letter are not 589 
significantly different (P>0.05). See methods for details of all statistical analyses. 590 

 591 
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