2008

Industrial maintenance data collection and application: developing an information strategy for an industrial site

Roy F. Evans
University of Wollongong
NOTE
This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING
You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
INDUSTRIAL MAINTENANCE DATA COLLECTION AND APPLICATION:
DEVELOPING AN INFORMATION STRATEGY FOR AN INDUSTRIAL SITE

A thesis submitted in fulfilment of the requirements for the award of the degree of

DOCTOR OF PHILOSOPHY

From

UNIVERSITY OF WOLLONGONG

By

ROY EVANS, ME Hons (Maintenance Management)

SCHOOL OF MECHANICAL MATERIAL AND MECHATRONIC ENGINEERING

2008
ABSTRACT

This work involved the evaluation of the efficacy of industrial information management. The study was prompted by the observation that contemporary society seemingly struggles to effectively utilise and manage the volumes of information that new technologies are delivering. It is reasonable to assume that industry, as a mirror of contemporary society, may be struggling to manage the convergence of equivalent information technologies.

Traditionally, within industry, structured organisations of people use work processes to record plant history in computerised work management systems. This work employs a socio technical perspective to examine conflict that is likely to be occurring within such structured groups of people. Social (socio) in respect of participants’ behavioural changes, technical in respect of understanding data selection for machine condition management.

Field research used constructivist evaluation methodology in three phases. Evaluation of current information management practice, in three electricity-generating power stations, was followed by an ethnological study to determine why industrial information management developed in the way that it had. By way of comparison, a third field research phase evaluated financial and medical information management processes.

At the evaluated sites, industrial information management was found to be an inadequately developed concept. Processes were found to be managed without application of explicitly stated strategies or audit protocols. Staff considered recording of work to be a transactional process directed at monitoring human performance rather than being a process for analysis to facilitate plant condition management and to develop plant knowledge.

Conclusions based primarily upon the ethnographical study indicate that the effects of informal social influence, power conflict, scientific work process and job design all contribute to an imbalance that develops between explicit recording and the complementary development of a tacit knowledge base. In contrast, medical ward management employed a combination of socio technical principles and informal double loop analyses to address corresponding conflict.

Outcomes of the study indicate that an evaluative matrix, developed for the study, would be suitable for professional audit of site information strategies and processes. Complementing the evaluative matrix has been the development of a practical methodology, based upon socio technical principles, which would be suitable for the development of convergent site information and production strategies.
ACKNOWLEDGEMENTS

Research of this nature could not be conducted nor be completed without the support of family, friends and colleagues. Throughout this project, I have been privileged to enjoy such support.

Colleagues who assisted and made the field work so enjoyable and productive deserve special mention: Les Rowlandson, Helen Rooke, Ray Walker, Wayne Winterbine, Marguerite Tierney and Steve Gambrill.

The challenging ethnological phase of the research could not have been completed without the support of retired staff. In particular, I would like to acknowledge the contribution made by Bill Eddy who described for me his development of the first recorded Australian industrial work planning and asset management system.

The project could not have been undertaken without the support and encouragement of Dave Williams nor the foresight and confidence placed in the study by Professor G Arndt.

I remain indebted to Kim Draisma for her ability to be able to select from her library the right book to begin every sociological literature discussion.

Finally, and certainly not least, I wish to acknowledge the patient support and reflective management of my supervisor Richard Dwight – the person that listened and encouraged me throughout the project.
TABLE OF CONTENTS

ABSTRACT..I

ACKNOWLEDGEMENTS...II

TABLE OF CONTENTS.. III

LIST OF FIGURES .. XI

LIST OF TABLES... XIII

GLOSSARY OF DEFINITIONS... XIV

1.0 INTRODUCTION ... 1

1.1 MOTIVATION ...1

1.2 PROBLEMS ...3

 1.2.1 General issues ... 3

 1.2.2 Issues with technology ... 4

 1.2.3 Issues with socially influenced knowledge ... 4

1.3 RATIONALE FOR THE RESEARCH... 5

1.4 STUDY DESIGN ...7

 1.4.1 Context and limits of the proposed study ... 7

 1.4.2 Selecting a philosophical paradigm ... 8

 1.4.3 Selecting a methodology ... 10

 1.4.4 Objective for the study 11

 1.4.5 Identifying Stakeholders ... 12

 1.4.6 Identifying the evaluand ... 13

 1.4.7 Establishing rigor .. 14

1.5 SUMMARY..14

2.0 PHILOSOPHICAL, TECHNICAL AND SOCIOLOGICAL
 PERSPECTIVES.. 16
2.1 INTRODUCTION ...16

2.2 PHILOSOPHICAL DEVELOPMENT ..16
 2.2.1 The relevance of data to the project ... 16
 2.2.2 Searching for a philosophic framework to support a definition for data: limitations of Polanyi’s philosophy ... 17
 2.2.3 An alternative to Polanyi ... 17
 2.2.4 Adapting Popper’s three world philosophy to develop a conceptual framework that will accept a definition for data ... 19
 2.2.5 The philosophical and conceptual framework that supports a definition for data .. 22
 2.2.6 Defining data ... 23
 2.2.7 Extending the conceptual data defining framework to include both Git’s maintenance concept and a data selection process 24
 2.2.8 Summary of the philosophical discussion ... 25

2.3 MANAGING PLANT SO THAT ITS CONDITION CAN BE MEASURED26
 2.3.1 Introduction ... 26
 2.3.2 Plant wear and assessment of plant condition ... 27
 2.3.3 Concepts for management of machine condition ... 31
 2.3.4 Work processes reliant on BS3811 definitions ... 32
 2.3.5 Limitations of work processes reliant on BS3811 definitions 32
 2.3.6 Delaying work by using work priority systems ... 33
 2.3.7 Identifying and managing risk in machine care ... 33
 2.3.8 Targeting a single cell or component to represent machine condition 34

2.4 SOCIOLOGICAL ISSUES ..36
 2.4.1 Introduction ... 36
 2.4.2 Managerial effectiveness: bureaucratic administration 37
 2.4.3 Managerial effectiveness: classical organisational structure 38
2.4.4 Managerial effectiveness: functionalist and strategic organisation structure ... 38

2.4.5 Managerial effectiveness: expansionist interpretative - complex responsive organisational structure ... 41

2.5 MANAGERIAL STRATEGIES...42

2.5.1 Introduction ... 42

2.5.2 Management as a process that manages the work paradigm 42

2.5.3 Concepts of culture, motivation and staff controlling strategies 43

2.5.4 Contingency theory and the change in managerial strategy from individual awareness to group awareness ... 44

2.5.5 Concepts of power .. 46

2.5.6 Socio technical work process and job design.. 49

2.5.7 Identifying audit and evaluative criteria ... 51

3.0 DISCOVERY PHASE - STAGE 1: AUDIT AND EVALUATION OF INDUSTRY RECORDING PRACTICES.. 54

3.1 INTRODUCTION ..54

3.2 SETTING CONDITIONS FOR THE FIELD STUDY..54

3.2.1 Contacting operatives.. 54

3.2.2 Preliminary field study.. 54

3.2.3 Field study methodology... 55

3.2.4 Site selection criteria.. 55

3.2.5 Selection of specific sites.. 56

3.3 COMPUTER CONFIGURATIONS ..57

3.4 WORK PROCESS DESIGN: FROM FIELD ACTIVITY TO COMPLETED FILE61

3.4.1 Observations ... 61

3.4.2 An example of a combined work and recording process......................... 61

3.5 IDENTIFIED NEEDS AND PROBLEMS AT ORGANISATIONAL FUNCTIONAL LEVELS. 63
4.6 THE STUDY PERIOD 1960 UNTIL 1991 - AN ERA OF CLASSICAL AND FUNCTIONAL ORGANISATIONAL STRUCTURE ... 78

4.6.1 Organizational structure ... 78

4.6.2 Work Process .. 79

4.6.3 Culture ... 83

4.6.4 Communication .. 84

4.6.5 Summary .. 88

4.6.6 Comments on the audit and ethnological evaluation period 1960 - 1991 .. 89

4.7 THE STUDY PERIOD 1991 UNTIL 1996 – AN ERA OF CONTINGENCY ADJUSTMENT AND CULTURAL CHANGE .. 90

4.7.1 Organisational structure ... 90

4.7.2 Work process ... 91

4.7.3 Culture ... 92

4.7.4 Comments on the ethnological evaluation period 1991 -1996 ... 94

4.8 THE STUDY PERIOD 1996 UNTIL THE PRESENT: AN ERA OF WORK PROCESS BY CRITICAL PARADIGM AND THE CONCEPT OF TEAMS .. 95

4.8.1 Organisation structure ... 95

4.8.2 Culture ... 96

4.8.3 Comments on the ethnological evaluation period 1996 -2004 97

4.9 SUMMARY .. 98

5.0 DISCOVERY PHASE - STAGE 3: EVALUATING ALTERNATIVE DATA COLLECTION PROCESSES ... 101

5.1 INTRODUCTION ... 101

5.2 FINANCIAL INFORMATION MANAGEMENT PRACTICE 101

5.3 MEDICAL PATIENT INFORMATION MANAGEMENT PRACTICE.......................... 103

5.4 SUMMARY OF THE THIRD DISCOVERY PHASE ... 105
APPENDIX 3- AN EXAMPLE OF PROCESS MANAGEMENT REPORTING 173

APPENDIX 4 – AN EXAMPLE OF DYSFUNCTIONAL PLANT FAILURE RECORDING ... 176

APPENDIX 5 – MINUTES OF A SEMINAR ILLUSTRATING DISSATISFACTION WITH COMBINED WORK AND INFORMATION PROCESS PERFORMANCE AND MANAGEMENT 189

APPENDIX 6 – AN EXECUTIVE SUMMARY FROM A REPORT THAT RECORDS DISSATISFACTION WITH INFORMATION MANAGEMENT .. 201

APPENDIX 7 – AN EXAMPLE OF A MAINTENANCE CONCEPT WRITTEN FOR A TECHNICAL SYSTEM AT SITE A ... 203

APPENDIX 8 – A DIAGRAM OF TECHNICAL SYSTEMS BEING DEVELOPED AT SITE B.. 211

APPENDIX 9 – MINUTES OF MORNING COORDINATION CONFERENCE AT SITE A .. 213

APPENDIX 10 – PRESENTATION OVERHEADS USED AT A SEMINAR TO EXPLAIN THE DEVELOPING CONCEPT OF INDUSTRIAL COMMUNITIES OF PRACTICE .. 217

APPENDIX 11- PRESENTATION OVERHEADS THAT WERE USED TO PRESENT FINDINGS OF THE RESEARCH TO PARTICIPANTS IN THE PROJECT ... 223

APPENDIX 12 - RESPONSE OF THE RESEARCH PARTICIPANTS TO THE RESEARCH FINDINGS ... 232
LIST OF FIGURES

Figure 1.1 Multi-disciplinary nature of the study 7

Figure 1.2 Constructivist evaluative methodology selected for the study 12

Figure 1.3 Illustration of the evaluand: data separated from information and knowledge 14

Figure 2.1 Spiral of individual Knowledge development 20

Figure 2.2 Spiral of organisational knowledge development 21

Figure 2.3 Load strength and stress relationship in a simple component 28

Figure 2.4 Three parameter Weibull Probability Distribution Function; displaying the concept of “Threshold time to Failure.” 29

Figure 2.5 Example of duel risk levels required for transformer monitoring 34

Figure 2.6 Concept of interconnecting sub-assemblies and machines to form a technical system 35

Figure 2.7 Development of a functional single business strategy 39

Figure 2.8 Organisation and functional development in a single business company 40

Figure 3.1 Sites A, B and C computer configuration 58

Figure 3.2 Sites A, B and C organisation functional structures 59

Figure 3.3 Computer file complexity 60

Figure 3.4 Work and information recording process: 62

Figure 4.1 Period 1950 to 1960: organization structure 73

Figure 4.2 Stage 2 Period 1960 until 1991: Organisation structure 79
Figure 4.3 Interim organisation structure introduced at the latter end of the period 1960 – 1991: organisation structure to improve coordination of work 86

Figure 4.4 Stage 3 Period 1991 until 1996: Organisation structure 90

Figure 4.5 Stage 4 Period 1996 until 2004: organisation structure 96

Figure 5.1 Medical information (patient’s ward file) flow chart 104

Figure 6.1 Graph of numbers of job cards stored in backlog since commissioning at Site A 111

Figure 6.2 Graph of the effect of clustering tolerable work with regular maintenance programming to restore plant and clear tolerable backlog 116

Figure 6.3 Effects of enforced codification of knowledge 121

Figure 6.4 Concept of tacit knowledge replacing explicit knowledge 124

Figure 7.1 Concept for the synthesis model 138

Figure 7.2 Structure of the data genome schema 139

Figure 7.3 A relational data base constructed using the data genome schema as a concept 140

Figure 7.4 Concept for management of the operations log 142

Figure 7.5 Production and information strategy methodology 143

Figure 7.6 Mission life re-evaluation process 144

Figure 7.7 Entity diagram for the data base derived from the data genome schema 145

Figure 7.8 Daily, annual and long term management of the model of synthesis 147
LIST OF TABLES

Table 2.1 Process audit exemplar and evaluation validating criteria 53

Table 3.1 Discovery phase Stage 1: evaluation results 67

Table 4.1 Ethnological evaluation results for the period 1950 – 1960 78

Table 4.2 Ethnological evaluation results for the period 1960 – 1991 89

Table 4.3 Ethnological evaluation results for the period 1991 – 1996 94

Table 4.4 Ethnological evaluation results for the period 1991 –1996 97

Table 5.1 Evaluation comparison of financial and medical (patient’s ward file) information processes 106
GLOSSARY OF DEFINITIONS

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept</td>
<td>A human process of abstraction; a process that is used by humans to develop mental frameworks (abstract categories) for sorting ideas</td>
<td>2.2.4</td>
<td>19</td>
</tr>
<tr>
<td>Communities of practice</td>
<td>Dynamic and informal groupings of individuals; where the individuals share a common interest and purpose and are able to interact communally to achieve an outcome</td>
<td>2.5.4</td>
<td>45</td>
</tr>
<tr>
<td>Data</td>
<td>The measure of variance from a nominated reference datum</td>
<td>2.2.6</td>
<td>23</td>
</tr>
<tr>
<td>Datum</td>
<td>Nominated state or condition of a defined entity</td>
<td>2.2.6</td>
<td>23</td>
</tr>
<tr>
<td>Domain</td>
<td>The ontological limited space that contains the entities and defined limits for an epistemological and ontological reference grid</td>
<td>2.2.6</td>
<td>23</td>
</tr>
<tr>
<td>Epistemology</td>
<td>Personal conceptualisation of what exists; a philosophy about how people perceive reality</td>
<td>1.4.2</td>
<td>8</td>
</tr>
<tr>
<td>Ethnological study</td>
<td>An ethnological study is carried out to develop understanding of how people, in a study group, construct their world – their reality and belief systems. The assumptions that support ethnology are constructivist</td>
<td>4.1</td>
<td>70</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>Evaluation</td>
<td>The systematic determination of the quality or value of something</td>
<td>1.4.3</td>
<td>10</td>
</tr>
<tr>
<td>Evaluand</td>
<td>What is being evaluated</td>
<td>1.4.6</td>
<td>13</td>
</tr>
<tr>
<td>Evaluator</td>
<td>The person facilitating the evaluation</td>
<td>1.4.5</td>
<td>13</td>
</tr>
<tr>
<td>Failure (in relation to industrial machines & technical systems)</td>
<td>The transition of a technical system to the state where it (the technical system) is inadequate for its function</td>
<td>2.2.7</td>
<td>24</td>
</tr>
<tr>
<td>Hermeneutics</td>
<td>The theory of understanding</td>
<td>2.2.4</td>
<td>19</td>
</tr>
<tr>
<td>Maintenance</td>
<td>The total of activities required to retain (technical systems) in, or restore them to the state necessary for fulfilment of the production function</td>
<td>2.2.7</td>
<td>24</td>
</tr>
<tr>
<td>Maintenance concept</td>
<td>The set of rules prescribing what maintenance is required</td>
<td>2.2.7</td>
<td>24</td>
</tr>
<tr>
<td>Merit</td>
<td>Merit is the intrinsic value of something. The term is used interchangeably with ”quality” and relates, in this study, to the potential for accuracy of interpretation of data by stakeholders operating within the process being evaluated</td>
<td>1.4.3</td>
<td>11</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>Need</td>
<td>That something, such that without it dysfunction of process would occur</td>
<td>2.5.7</td>
<td>52</td>
</tr>
<tr>
<td>Ontology</td>
<td>Ontology is a formal and explicit specification of a shared conceptualisation</td>
<td>2.2.5</td>
<td>22</td>
</tr>
<tr>
<td>Power</td>
<td>The act of exercising discipline over an individual or society’s time and space</td>
<td>2.5.5</td>
<td>46</td>
</tr>
<tr>
<td>Production strategy</td>
<td>A strategy that reduces interactive operational and maintenance policies, within each technical system, to a select set of data parameters appropriate for monitoring functional and physical condition</td>
<td>2.2.7</td>
<td>25</td>
</tr>
<tr>
<td>Reality</td>
<td>Reality is any person’s interpreted truth – the content of their conceptualisation</td>
<td>2.2.3</td>
<td>18</td>
</tr>
<tr>
<td>Reliability</td>
<td>The probability that an item will perform its function under stated conditions of use and maintenance for a stated measure of the variate (time, distance etc)</td>
<td>2.3.2</td>
<td>27</td>
</tr>
<tr>
<td>State or condition of a technical system</td>
<td>The physical ability (condition) considered relevant to fulfilment of its (the technical system) function</td>
<td>2.2.7</td>
<td>24</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>Technical system</td>
<td>A collection of physical elements fulfilling a specific function</td>
<td>2.2.7</td>
<td>24</td>
</tr>
<tr>
<td>Terotechnology</td>
<td>A combination of management, financial, engineering and other practices applied to physical assets in pursuit of economic life cycle costs</td>
<td>2.3.3</td>
<td>31</td>
</tr>
<tr>
<td>Want</td>
<td>A conscious desire without which dissatisfaction may occur; process function would not be affected</td>
<td>2.5.7</td>
<td>53</td>
</tr>
<tr>
<td>Work orders</td>
<td>A written instruction detailing work to be carried out</td>
<td>6.3</td>
<td>109</td>
</tr>
<tr>
<td>Work (tolerable)</td>
<td>Observed plant defect that is able to be deferred and clustered to be completed in association with programmed maintenance</td>
<td>6.3.2</td>
<td>115</td>
</tr>
<tr>
<td>Work (intolerable)</td>
<td>Observed plant defect that will result in loss of plant function and requires immediate attention</td>
<td>6.3.2</td>
<td>115</td>
</tr>
<tr>
<td>Worth</td>
<td>Worth is the extrinsic value of something. The term is used interchangeably with “value” and relates, in this study, to the suitability of data for accurate simulation of the process by multiple stakeholders operating external to the process being evaluated</td>
<td>1.4.3</td>
<td>11</td>
</tr>
</tbody>
</table>