2008

Study of superconducting and electromagnetic properties of un-doped and organic compound doped MgB2 conductors

Shahriar Al-Hossain

University of Wollongong

Recommended Citation

STUDY OF SUPERCONDUCTING AND ELECTROMAGNETIC PROPERTIES OF UN-DOPED AND ORGANIC COMPOUND DOPED MgB₂ CONDUCTORS

A thesis submitted in fulfillment of the requirements for the award of the degree

DOCTOR OF PHILOSOPHY

From the

UNIVERSITY OF WOLLONGONG

By

MD. SHAHRIAR AL HOSSAIN, B.Sc.

Institute for Superconducting & Electronic Materials

Faculty of Engineering

2008
DECLARATION

This is to certify that the work presented in this thesis was carried out by the candidate in the laboratories of the Institute for Superconducting and Electronic Materials (ISEM), at the University of Wollongong, NSW, Australia, and has not been submitted for a degree to any other institution for higher education.

Md Shahriar Al Hossain

2008
ACKNOWLEDGMENTS

In the first place, it is a pleasure to convey my gratitude to Prof. S. X. Dou, Assoc. Prof. X. L. Wang, and Dr. J. H. Kim for their supervision, advice, and guidance from the very early stage of my research, as well as for giving me extraordinary experiences throughout the work. Above all and most important, they provided me with unflinching encouragement and support in various ways during my PhD studies in ISEM at the University of Wollongong.

I would like to express my gratitude to Dr. K. Konstantinov, Dr J. Horvat, Dr. G. Peleckis, Dr. W. K. Yeoh, and Mr. Xu Xun for their crucial contributions to measurements, fruitful discussions, and useful suggestions.

It is a pleasure to pay tribute also to the sample collaborators. I would like to thank Prof. E. W. Collings, Dr M. Sumption, Mr. M. Rindfleisch, Mr. M. A. Susner, Mr M. Tomsic, Prof. H. Kumakura, Dr. A. Matsumoto, and Dr. T. Nakane for their great support during my research visit to Ohio State University, USA; Hypertech Research, USA, and the National Institute for Material Science (NIMS), Japan. I would also like to acknowledge all of them for their great collaboration and for the generous opportunity they gave me to use their facilities.

I gratefully thank Dr. T. Silver for her kind help in proofreading and correcting the English in the manuscripts of my journal articles and in this thesis.

I would also like to express my gratitude to the Australian Research Network for Advanced Materials (ARNAM) for giving me support to visit USA and Japan for collaborative research.

I must convey special acknowledgement to all of my friends at ISEM and all the members and technicians at the Faculty of Engineering, especially Mr. R. Kinnell, Mr. G Tillman, and Mr. N. Mackie for their assistance in making use of the facilities.
I convey special acknowledgement to Dr. S. Needham for his indispensable help, advice on getting my commercialization training scheme (CTS) award, and useful discussions regarding the commercialization of my project.

Where would I be without my family? My parents deserve special mention for their inseparable support and prayers. My Father, Mofazzal Hossain, in the first place, is the person who established what is good in my character, showing me the joy of intellectual pursuits and ethical considerations ever since I was a child. My Mother, Hosne ara Begum, is the one who raised me with sincere, caring and gentle love. Thanks to my sister Shama and in-laws, specially Bushra, for being supportive and caring siblings.

Words fail me to express my appreciation to my wife Faria, whose dedication, love and persistent confidence in me has taken the load off my shoulders, and to my loving daughter Anisha who was born in 2006 and brought me a lot of good luck, I believe.

Finally, I would like to thank everybody who was important to the successful realization of this thesis, as well as expressing my apologies that I could not mention them all personally, one by one.
TABLE OF CONTENTS

ABSTRACT .. 1

CHAPTER 1: .. 5

1. **INTRODUCTION** ... 5

References ... 14

CHAPTER 2 ... 17

2. **LITERATURE REVIEW** ... 17

2.1 Introduction: .. 17

2.2 Why is MgB$_2$ so special? ... 18

2.3 Crystal and electronic structure of MgB$_2$... 18

2.4 Superconducting mechanism in MgB$_2$... 20

2.4.1 Isotope effect ... 21

2.4.2 Two-gap superconductivity of MgB$_2$... 22

2.4.3 Anisotropy .. 25

2.4.4 Coherence lengths ... 27

2.4.5 Absence of weak links: 28

2.5 Fabrication/Preparation of MgB$_2$ superconductors ... 29

2.5.1 Bulk samples: .. 29

2.5.1.1 In-situ and ex-situ methods: .. 29

2.5.1.2 Mechanical alloying (MA): .. 33

2.5.1.3 Hot (HIP) and Cold (CIP) isostatic pressing: ... 37

2.5.1.3.1 CIP: .. 37

2.5.1.3.2 HIP: .. 38

2.5.2 Wire and tape samples: ... 42

2.5.2.1 Mg diffusion method: .. 43

2.5.2.2 PIT method ... 43

2.5.2.3 HIP processing: ... 45
2.5.2.4 Continuous Tube Filling and Forming (CTFF) method: ... 46
2.5.2.5 Liquid infiltration method: .. 47
2.5.3 Sheath materials for PIT: ... 50
2.5.4 Effect of starting materials on the superconductivity: ... 52
 2.5.4.1 Mg precursor powder: ... 52
 2.5.4.1.1 Properties of Mg: .. 52
 2.5.4.1.2 Size of Mg powder ... 52
 2.5.4.1.3 Mg deficiency: .. 53
 2.5.4.1.4 Excess Mg: .. 54
 2.5.4.1.5 MgH$_2$ in stead of Mg: ... 55
 2.5.4.2 B precursor powder: .. 55
 2.5.4.2.1 Properties of Boron powder: .. 55
 2.5.4.2.2 Purity of Boron precursor: .. 56
2.6 Fundamental properties of MgB$_2$ superconductors: ... 58
 2.6.1 Critical parameters: ... 58
 2.6.1.1 Critical temperature (T_c): .. 58
 2.6.1.2 Critical current density (J_c): .. 60
 2.6.1.3 Upper critical field (H_{c2}): .. 62
 2.6.1.4 Lower critical field (H_{c1}): .. 63
 2.6.1.5 Irreversibility field (H_{irr}): .. 64
2.7 Chemical doping effects: ... 66
 2.7.1 C-source doping: .. 67
 2.7.2 Single element dopants: ... 68
 2.7.3 Other compound dopants: .. 70
 2.7.3.1 Oxides: .. 70
 2.7.3.2 Silicides: .. 70
 2.7.3.3 Borides and hydrides: ... 70
2.8 Dual reaction model: ... 71
2.9 Why are carbohydrates special compared to other dopants? .. 73
 2.9.1 Why does malic acid show better performance than other carbohydrates? 75
CHAPTER 5 .. 132
5. CARBOHYDRATE (C₄H₆O₅) DOPING TO ENHANCE THE ELECTROMAGNETIC PROPERTIES OF MgB₂ SUPERCONDUCTORS 132
 5.1 Introduction: ... 132
 5.2 Experimental: .. 133
 5.3 Result and Discussion: .. 134
 5.3.1 Analysis of lattice parameters and crystallinity in doped samples: 134
 5.3.3 Comparison of microstructure in un-doped and doped samples: 138
 5.4 Summary: .. 141
References: ... 142
CHAPTER 6 .. 144
6. SYSTEMATIC STUDY OF MgB₂ + C₄H₆O₅ SUPERCONDUCTOR PREPARED BY THE CHEMICAL SOLUTION ROUTE ... 144
 6.1 Introduction: ... 144
 6.2. Experimental procedure .. 145
 6.3. Results and discussion ... 146
 6.3.1 Analysis of lattice parameters and unit cell volume 146
 6.3.2 Analysis of C-substitution and strain effect .. 147
 6.3.3 Analysis of the grain morphology using micro-structure 150
 6.3.4 Formation of MgO increased with increasing doping level 152
 6.3.5 Analysis of the superconducting properties .. 153
 6.4 Summary .. 155
References .. 156
CHAPTER 7 .. 157
7. SIGNIFICANT ENHANCEMENT OF Hc2 and Hirr IN MgB₂ + C₄H₆O₅ BULKS AT THE LOW SINTERING TEMPERATURE OF 600 °C .. 157
LIST OF FIGURES

Figure 2.1 MgB$_2$ structure [6]... 19

Figure 2.2 MgB$_2$ in comparison with other types of superconductor [6] 20

Figure 2.3 (a) Isotope shift as seen in magnetization (upper panel) and resistance (lower panel) [4]. ... 21

Figure 2.3 (b) Temperature dependent specific heat of Mg10B$_2$ (top) and Mg11B$_2$ (bottom) in zero (filled circles) and 90 kG (open triangles) applied field. The arrows mark position of T_c as determined from magnetization measurements [4] ... 22

Figure 2.4 Electronic structure of MgB$_2$ (a) the 2-D network of σ bands and 3-D network of π bands [16]; (b) Fermi surface of MgB$_2$. The vertical sections of cylinders at the corners are linked with the σ bands; the more 3-D network of tunnels and caves in the center of the region is connected with the π bands. [15]. ... 23

Figure 2.5 Upper critical field anisotropy versus temperature for MgB$_2$ single crystals, wire and powders. Note that the $H_{c2}(T)$ data for MgB$_2$ bulk falls between the anisotropic dependencies of $H_{c2}(T)$ for $H//c$ and $H//ab$ [4]; reference names and numbers used in the figure’s legend according to [4]. ... 26

Figure 2.6 Critical current density dependence on magnetic field and temperature. Data are taken from resistive and magnetic measurements [6,139]. ... 28

Figure 2.7 Atomic force microscope (AFM) images (illuminated 3D mode) of the in-situ and ex-situ annealed MgB$_2$ films. (a) in-situ annealed film in 500× 500 nm2 range, (b) ex-situ annealed film in 2× 2 μm2 range [40]. ... 30

Figure 2.8 The critical current densities of the two types of MgB$_2$ film as calculated from M–H loops. Solid symbols: ex-situ annealed film; open symbols: in-situ annealed film [40]. ... 31

Figure 2.9 (a) Irreversibility lines, (IL) versus temperature curves for the in-situ and ex-situ annealed films. The data for an oxygen alloyed MgB$_2$ film [2] are put into the figure for comparison. (b) Upper critical fields versus temperature for the two films. The data for c-axis-oriented MgB$_2$ films from [10] are also shown in this figure [40].
Figure 2.10 Dependence on ball-milling time of (a) \(a\)- and \(c\)-axis lattice parameters, (b) \(c/a\), (c) full-width at half-maximum (FWHM) of particular peaks, and (d) lattice strain of MgB\(_2\) samples using different B [43].

Figure 2.11 The magnetic critical current density \(J_c\) for all MgB\(_2\) samples as a function of external magnetic field at 5 and 20 K [43]. The numbers before the second B in the sample names give the boron ball-milling times in hours. B96S used as received 96\% B.

Figure 2.12 Grain size distribution of mechanically alloyed precursor powder obtained by statistical investigation (bottom panel) of a transmission electron microscope (TEM) image (top panel) in dark field mode [44]. The inset of the top panel shows the corresponding selected area electron diffraction (SAED) pattern.

Figure 2.13 Critical current density versus applied magnetic field for un-doped and carbon doped MgB\(_2\) bulk samples at 4.2 and 20 K [44]

Figure 2.14 Cross-sectional view of dry CIP (left) and wet CIP (right) [432].

Figure 2.15 Cross-sectional view of ANSTO HIP [431].

Figure 2.16 Magnetic critical current density \(J_c\) as a function of magnetic field \(H\) for the un-HIP processed and unprocessed samples at 5 and 30 K. Both samples show nearly the same value of \(J_c\) at self-field, but the differences between the samples increases with field, and the drop in \(J_c\) at higher fields is very much faster in the unprocessed sample than in the HIP processed one [49].

Figure 2.17 SEM micrographs of MgB\(_2\) samples (a) surface of the unprocessed sample and (b) surface of the HIP processed sample [49].

Figure 2.18 A low magnification TEM image showing two kinds of areas: a dense area marked ‘A’ and an area with porosity labeled ‘B’ (top panel); a large magnification TEM image of the dense area (mid panel) and a large magnification TEM image of the area with porosity (bottom panel)[51].
Figure 2.19 Powder in tube (PIT) process for wires and tapes [433]
... 44

Figure 2.20 The normalized pinning forces obtained from $I_c (B)$ measurements of MgB$_2$/Cu and MgB$_2$/Fe/Cu composites at 4.2 K [62].
... 45

Figure 2.21 Continuous tube filling and forming process first used by Hypertech Research, USA [388].
... 47

Figure 2.22 Schematic diagram of the fabrication process of MgB$_2$/Fe composite wire using the internal Mg diffusion (IMD) process [65].
... 48

Figure 2.23 SEM images of the fractured cross-sections of MgB$_2$ cores in wires (a) 5 mol% SiC added IMD processed wire, heat treated at 700 °C for 1 hour; (b) PIT processed wire [65].
... 49

Figure 2.24 Transport J_c vs field curves at 4.2 K of pure and 5mol% SiC added IMD processed wire. The data on PIT processed wires are also shown for comparison [65].
... 49

Figure 2.25 Fabrication methods of all the forms of MgB$_2$ [6]
... 50

Figure 2.26 $J_c (B)$ dependences (a) for in-situ MgB$_2$ wires sintered at temperatures ranging from 500 °C to 750 °C, and (b) for ex-situ wires sintered at 950 °C [140]
... 51

Figure 2.27 Transport critical current densities versus applied magnetic field at 20 K for MgB$_2$/Fe tapes prepared with 10 µm size Mg and high purity boron powders. The heat-treatment temperature was 700 °C [148].
... 53

Figure 2.28 Normalized volume pinning force (F_p) as function of the applied field at (a) 5 K and (b) 20 K, for the different samples [181].
... 57

Figure 2.29 Variation of T_c of MgB$_2$ with doping level for various dopants. Data for the graphs are taken from the references given in brackets [182]; the reference numbers shown in the figure legend according to [182]
... 59
Figure 2.30 Variation of T_c of MgB$_2$ with variation in (a) the a axis, (b) the c axis and (c) the volume under irradiation, pressure or doping. Data for the graphs are taken from the references given in brackets [182]; the reference numbers shown in the figure legend according to [182]
... 59

Figure 2.31 PIT tapes data presented by the Dresden group, Germany at the 8th European Conference on Applied Superconductivity (EUCAS) in Brussels in 2007.
... 62

Figure 2.32 Highest values of H_{c2} (T) for MgB$_2$ in different geometries (bulk, single crystal, wire and films) [4]; reference names and numbers are used in figure’s legend according to [4]; the reference names and numbers shown in the figure legend according to [4]
... 63

Figure 2.33 Irreversibility field versus temperature for different geometries of MgB$_2$ (bulk, film, wire and powder) [6]; the reference names and numbers shown in the figure legend according to [6]
... 65

Figure 2.34 Field dependence of the transport J_c, properties of MgB$_2$/Fe tapes with various amounts of MgO nanoparticle addition. The measurements were performed at 4.2 K and with the field parallel to the tape surface [409].
... 79

Figure 2.35 Field dependence of the magnetic J_c, properties of MgB$_2$/Fe tapes with various amounts of MgO nanoparticle addition at 5, 20, and 30 K [409].
... 79

Figure 2.36 Market projections until 2010 predicted by Hypertech Research Inc., USA [426].
... 81

Figure 2.37 Road map for MgB$_2$ wire development and commercial MgB$_2$ magnets [418]
... 82

Figure 3.1 Schematic of an X-ray powder diffractometer [5]
... 113

Figure 3.2 Spectroscopy data is often portrayed as a graph plotting counts vs. energy. The peaks correspond to characteristic elemental emissions [6].
... 114

Figure 3.3 Schematic illustration of a DTA cell [1].
... 115
Figure 4.1 Differential thermal analysis (DTA) for MgB$_2$/Fe wire and bare Fe.
... 120

Figure 4.2 (a) Lattice parameters and (b) weight fractions of MgB$_2$ and MgO with different sintering temperatures.
... 122

Figure 4.3 Critical temperature (T_c) and full width at half-maximum (FWHM) of the (110) peak against sintering temperature.
... 124

Figure 4.4 Analysis of the micro- and macro-strain with diffraction line.
... 125

Figure 4.5 The behaviour of strain with different sintering temperatures.
... 126

Figure 4.6 Transport $J_c (B)$ of MgB$_2$/Fe wires sintered at different temperatures.
... 127

Figure 5.1 Superconducting properties of un-doped MgB$_2$ and MgB$_2$ + C$_4$H$_6$O$_5$ samples with different addition levels: (a) Magnetic field dependence of J_c in all samples at 20 and 5 K; (b) field dependence of the volume pinning force, $F_p=J_b B$, of all samples at 20 K. The F_p is normalized by the maximum volume pinning force $F_{p, \text{max}}$.
... 136

Figure 5.2 Normalized temperature dependence of H_{irr} and H_{c2} for un-doped and C$_4$H$_6$O$_5$ doped samples. H_{c2} and H_{irr} were defined as $H_{c2}=0.9 R (T_c)$ and $H_{\text{irr}}=0.1 R (T_c)$ from the R vs T curve.
... 137

Figure 5.3 Photographs from FEG-SEM: (a) un-doped MgB$_2$, (b) MgB$_2$ +10 wt% C$_4$H$_6$O$_5$, and (c) MgB$_2$+30 wt% C$_4$H$_6$O$_5$.
... 139

Figure 5.4 FWHM as a function of the amount of C$_4$H$_6$O$_5$. MgB$_2$ (100), (101), (002), and (110) correspond to 2θ ~ 33.6°, 42.5°, 52.0°, and 60.0°, respectively.
... 140

Figure 6.1 (a) a-axis lattice parameter, (b) c-axis lattice parameter, (c) unit cell volume, and (d) c/a values of MgB$_2$ + C$_4$H$_6$O$_5$ samples calculated from Rietveld refinement.
... 146
Figure 6.2 (a) Actual amount of C substitution (x) in the composition of Mg(B\textsubscript{1-x}C\textsubscript{x})\textsubscript{2} and (b) lattice strain with amount of C\textsubscript{4}H\textsubscript{6}O\textsubscript{5} additive.
... 148

Figure 6.3 The \textit{a}-axis lattice parameter versus actual C substitution (x) in Mg(B\textsubscript{1-x}C\textsubscript{x})\textsubscript{2}.
... 149

Figure 6.4 Field emission gun-scanning electron microscopy (FEG-SEM) images of (a) un-doped MgB\textsubscript{2}, (b) MgB\textsubscript{2}+10 wt\% C\textsubscript{4}H\textsubscript{6}O\textsubscript{5} and (c) MgB\textsubscript{2}+30 wt\% C\textsubscript{4}H\textsubscript{6}O\textsubscript{5}.
... 150

Figure 6.5 Field emission gun-scanning electron microscopy (FEG-SEM) image of MgB\textsubscript{2} + 30 wt\% C\textsubscript{4}H\textsubscript{6}O\textsubscript{5} with inhomogeneous microstructures.
... 151

Figure 6.6 Weight fractions of MgB\textsubscript{2}/ Mg (B\textsubscript{1-x}C\textsubscript{x})\textsubscript{2} and MgO with different amounts of C\textsubscript{4}H\textsubscript{6}O\textsubscript{5} additive.
... 152

Figure 6.7 Critical temperature (T_c) behaviour with different amounts of C\textsubscript{4}H\textsubscript{6}O\textsubscript{5} additive. The inset shows that T_c broadening occurred for all MgB\textsubscript{2} + C\textsubscript{4}H\textsubscript{6}O\textsubscript{5} samples.
... 153

Figure 6.8 Irreversibility field (H_{irr}) dependence as a function of the amount of C\textsubscript{4}H\textsubscript{6}O\textsubscript{5} additive. The H_{irr} values were defined by a critical current density (J_c) criterion of 100 A cm-2. The inset shows J_c of all MgB\textsubscript{2} + C\textsubscript{4}H\textsubscript{6}O\textsubscript{5} samples at 20 K.
... 154

Figure 7.1 The X-ray diffraction patterns for referenced un-doped MgB\textsubscript{2} sintered at 650\degree C and MgB\textsubscript{2} + 10wt\% C\textsubscript{4}H\textsubscript{6}O\textsubscript{5} samples sintered from 650 to 900\degree C. Inset is the MgB\textsubscript{2} + 10wt\% C\textsubscript{4}H\textsubscript{6}O\textsubscript{5} samples sintered at 600\degree C for 30 min, 2 hours, and 4 hours, respectively.
... 159

Figure 7.2 SEM images for MgB\textsubscript{2} + 10wt\% C\textsubscript{4}H\textsubscript{6}O\textsubscript{5} samples sintered at (a) 600\degree C for 4 hours and (b) 650\degree C for 30 min.
... 161

Figure 7.3 Temperature dependence of normalized (a) H_{irr} and (b) H_{c2} for MgB\textsubscript{2} + 10wt\% C\textsubscript{4}H\textsubscript{6}O\textsubscript{5} samples as a function of sintering temperature.
... 162
Figure 7.4 Temperature dependence of normalized H_{c2} for the MgB$_2$ + 10wt% C$_4$H$_6$O$_5$ sample sintered at 600°C for 4 hours. The H_{c2} for other C doped samples are also shown for comparison (Ref. 9).

Figure 8.1 (a) The a-axis lattice parameter, (b) lattice strain, and (c) fraction of MgO/Mg for pristine MgB$_2$ and MgB$_2$+ C$_{16}$H$_{10}$/Fe wires as a function of the amount of pyrene. All wire samples were sintered at 650 °C for 30 min. The solid line show a linear fit to the data.

Figure 8.2 (a) The a-axis lattice parameter, (b) c-axis lattice parameter, and (c) actual amount of carbon (C) substitution (x) in the composition of Mg(B$_{1-x}$C$_x$)$_2$ for pristine MgB$_2$ and MgB$_2$+10 wt% C$_{16}$H$_{10}$/Fe wires as a function of sintering temperature. The wire samples were sintered at 600 °C for 4 h, 620 °C for 1 h, 650 °C for 30 min, 700 °C for 30 min, 800 °C for 30 min, respectively. The solid line show a linear fit to the data.

Figure 8.3 Transport critical current density (J_c) of pristine MgB$_2$ and MgB$_2$+10 wt% C$_{16}$H$_{10}$/Fe wires as a function of applied magnetic field and sintering temperature.
LIST OF TABLES

Table 2.1 Anisotropy of the upper critical field and coherence lengths inferred from experiments on aligned powders, thin films, single crystals, and randomly aligned powders [6]; reference names are used in this table according to [6]............................... 27

Table 2.2 Phase formation in the in-situ and ex-situ samples at different annealing temperatures [41]. ... 32

Table 2.3 Critical current densities in different MgB$_2$ tapes, wires and films for various magnetic fields and temperatures [4]; the reference names and numbers shown in the figure legend according to [4].. 61

Table 2.4 List of superconducting parameters of MgB$_2$ [4]... 66

Table 2.5 Reported C-sources as dopants.. .. 68

Table 2.6 Reported single elements as dopants... 69

Table 2.7 Reported oxides as dopants.. 70

Table 2.8 Reported silicides as dopants.. 70

Table 2.9 Reported borides and hydrides as dopants... 70

Table 2.10 Assessment of dopants according to the dual reaction model...................... 73

Table 2.11 Parameter specifications: MgB$_2$, BSCCO, and NbTi [418]....................... 82

Table 4.1 The measured resistivity values, residual resistivity ratios (RRR) and active cross-sectional area fraction (A_F) for MgB$_2$/Fe wires with different sintering temperatures. .. 128

Table 5.1 Measured data for un-doped MgB$_2$ and MgB$_2$+ C$_4$H$_8$O$_5$ samples with different addition levels. H_{irr} * was calculated from the standard criterion of J_c (100 A cm$^{-2}$).... 134

Table 7.1 Measured data for un-doped MgB$_2$ and 10wt% C$_4$H$_8$O$_5$ samples with different sintering conditions.. 161
ABSTRACT

In this thesis I emphasized on the organic compound doping (specially carbohydrate group, malic acid, C₄H₆O₅) and heat treatment effects on the superconducting properties of MgB₂. I also focused on the basic and fundamental properties of un-doped MgB₂ wires in different temperatures for comparison purpose. And finally I have proposed another new dopant which avoids some problems using carbohydrate in some aspects.

Firstly, I have studied the effects of sintering temperature on the phase transformation, lattice parameters, full width at half-maximum (FWHM), strain, critical temperature (Tₑ), critical current density (Jₑ), and resistivity (ρ) in MgB₂/Fe wires. All samples were fabricated by the in situ powder-in-tube method (PIT) and sintered within a temperature range of 650–900 °C. I have showed that why I have taken such sintering temperature range by analyzing with differential thermal analysis (DTA). The increased FWHM and decreased Tₑ at low sintering temperature region suggested the smaller grain size and poor crystallinity. Strain values also higher at low sintering region. That’s why it was observed that wires sintered at low temperature, 650 °C, resulted in higher Jₑ up to 12 T. The best transport Jₑ value reached 4200 A cm⁻² at 4.2 K and 10 T. This is related to the grain boundary pinning due to small grain size and poor crystallinity due to strain defects. On the other hand, wires sintered at 900 °C had a lower Jₑ in combination with better crystallinity due to higher Tₑ.

The effect of carbohydrate doping on lattice parameters, microstructure, Tₑ, Jₑ, Hₑrr, and Hₑc₂ of MgB₂ has been studied. In this work I used malic acid, C₄H₆O₅ as an example of
carbohydrates as an additive to MgB$_2$. We have described the advantages of carbohydrate doping include homogeneous mixing of precursor powders, avoidance of expansive nanoadditives, production of highly reactive C, and significant enhancement in J_c, H_{irr}, and H_{c2} of MgB$_2$, compared to un-doped samples. The defects due to the C substitution into boron site lead to the enhancement of H_{irr} and H_{c2}. The decrease of a-axis lattice parameter and reduction of T_c indicates poor crystallinity due to C substitution. The microstructure was shown both for un-doped and doped samples which were well consistent with FWHM. The J_c for MgB$_2$+30 wt% C$_4$H$_6$O$_5$ sample was increased by a factor of 21 at 5 K and 8 T without degradation of self-field J_c due to C substitution into B sites.

During the evaporation process of the C$_4$H$_6$O$_5$ with B and solvent, freshly and highly reactive C is produced and C substitution for B can take place at the temperature same as the formation temperature of MgB$_2$. By using this chemical route I again evaluated the doping effects of C$_4$H$_6$O$_5$, from 0 to 30 wt% of the total MgB$_2$, on the lattice parameters, lattice strain, amount of carbon (C) substitution, microstructures, weight fraction of MgO, critical temperature (T_c), critical current density (J_c), and irreversibility field (H_{irr}) of a MgB$_2$ superconductor. The calculated lattice parameters show a large decrease in the a-axis lattice parameter for MgB$_2$ + C$_4$H$_6$O$_5$ samples from 3.0861(6) to 3.0736(1) Å, with even a 10 wt% addition. This is an indication of C substitution into boron sites, with the C coming from C$_4$H$_6$O$_5$, resulting in enhancement of J_c and H_{irr}. Specifically, the H_{irr} of the MgB$_2$ + C$_4$H$_6$O$_5$ samples prepared by the chemical solution route reached around 7 T at 20 K, with a T_c reduction of only 1.5 K. In addition, the self-field J_c of the MgB$_2$ +
C₄H₆O₅ samples was only slightly reduced at an additive level as high as 30 wt%. The interesting thing I found here is maximum C-substitution and the maximum enhancement of all the superconducting parameters up to 10 wt% addition, after that the improvement rate is saturated. From these data I can claim 10 wt% addition is enough for maximum C-substitution and enhancement of superconducting properties. However, residual oxygen after evaporation processing contributed to a large amount of MgO in our MgB₂ + 30 wt% C₄H₆O₅ samples. These problems can be further controlled by the amount of C₄H₆O₅ additive or different evaporation temperatures.

After the successful doping effects of C₄H₆O₅ into MgB₂, then I investigated the behavior of C₄H₆O₅ as a dopant with different sintering temperatures. All the samples were prepared by the chemical solution route. I report the carbon (C) substitution effects of MgB₂ + 10 wt% C₄H₆O₅ on the lattice parameters, critical temperature (Tc), upper critical field (Hc₂), and irreversibility field (Hirr) as a function of sintering temperature in the range from 600 to 900 °C. The additive C₄H₆O₅ as the C source resulted in a small depression in Tc, but significantly increased the C substitution level, and hence improved the Hc₂ and Hirr performance at a low sintering temperature of 600 °C in conjunction with a short sintering period of 4 h. In addition, the low-temperature sintering process resulted in small grain size and higher impurity scattering compared to a pure MgB₂ superconductor which promotes the flux pinning significantly.

Very recently, I have chosen another solid hydrocarbon dopant named pyrene (C₁₆H₁₀) in to MgB₂. There are few reasons behind this decision. Firstly we know all the carbohydrates consist of carbon (C), hydrogen (H), and oxygen (O). During the
evaporation process of C₄H₆O₅, I noticed that the MgO amount is gradually increased with increasing doping level. So our group suggests such special solid hydrocarbon without O content which may reduce the MgO content within the matrix. In this work, we report on significantly enhanced J_c in MgB$_2$ superconductor that was easily obtained by doping with a hydrocarbon, highly active C$_{16}$H$_{10}$, and using a sintering temperature as low as 600 °C. The processing advantages of the C$_{16}$H$_{10}$ additive include production of a highly active carbon C source, an increased level of disorder, and the introduction of small grain size, resulting in enhancement of J_c.