Health Tracking Project – The Development of a National Framework for Managing Occupational Illness and Disease in the Australian Minerals Industry

C. Bofinger
University of Queensland

Follow this and additional works at: https://ro.uow.edu.au/coal

Recommended Citation
https://ro.uow.edu.au/coal/84

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Health Tracking Project — The Development of a National Framework for Managing Occupational Illness and Disease in the Australian Minerals Industry

C Bofinger

ABSTRACT

The Health Tracking project is one of five projects being undertaken as part of the Minerals Industry Cooperation Initiative (MICI) – a national initiative sponsored by the Minerals Council of Australia. The aim of the Health Tracking project is to assess the practicality of ways to demonstrate the monitoring of hazardous exposures and the occurrence of related occupational illness and disease and development of management systems and strategies at a national level.

This second stage of the project will be completed in 2005 and will cover four areas:

1. pilot development of a comprehensive job exposure matrix (JEM) for the minerals industry;
2. development of both proactive and reactive occupational illness and disease metrics;
3. recommendations regarding appropriate health tracking models; and
4. provision of best practices guidelines for management of occupational health.

The synergies between these areas will establish the path towards an effective national occupational health surveillance system and the development of effective prevention strategies and policies.

INTRODUCTION

The Health Tracking project is one of the projects under the Minerals Industry Cooperation Initiative – MICI (Bofinger, 2004). MICI projects include the Health Project, Lessons Learned, Professional Pathways, MIRMgate and National Minerals Industry Risk Assessment Guidelines. The intent behind the projects is to address factors impacting on the occupational health and safety risks in the industry and to demonstrate, by 2006, that cooperation and the sharing of resources and information between mining companies is achievable and valued. This will form the basis of discussions with other industry stakeholders for a broader cooperative initiative.

The National Occupational Health and Safety Commission (2000) reported on broad issues of occupational health and safety data in Australia and concluded that the overall health burden of occupational disease was much greater than that caused by injury. Occupational disease was grossly under-reported because the current data systems were ineffective in capturing data on prevailing work environments and establishing relationships with health outcomes.

There is no comprehensive system of surveillance for occupational disease and illnesses. Surveillance is vital to the prevention of occupational diseases, injuries and fatalities. It provides information necessary to draw attention to the magnitude of workplace health and safety problems, to set research priorities and to target and evaluate interventions to improve worker safety and health. The current situation is fragmented with information relevant to the minerals industry held by:

• companies and sites,
• medical personnel, and
• workers compensation.

1. Manager, Health Projects, Minerals Industry Safety and Health Centre, The University of Queensland, Brisbane Qld 4000.
The initial focus of the project was to identify and analyse the different approaches to occupational health monitoring and surveillance currently in place and identify the influence of the current situation on the potential for a national system (Bofinger, 2004).

Phase one
Mindful of the definition of health surveillance used within the project as being:

Health surveillance is the ongoing systematic collection, analysis and interpretation of data for purposes of improving health and safety

we identified the limitations of the existing situation.

Recognition of need for health surveillance
The need for some form of health monitoring of individuals is well recognised and widely practised throughout the mining and minerals industry.

Recognition of the need and requirements for health surveillance is less well recognised but is growing.

Identification of outcomes required
The Government schemes in place were established as a result of the history of disease in the mining and minerals industry. The focus for these centralised schemes is occupational health information. There are differences in the philosophies behind the schemes and the data collected.

Current medicals completed under Government or company schemes are unlikely to identify the physiological changes that occur at the early stages of an occupational disease affecting other systems due to latency of onset and limited diagnostic criteria. There are exceptions, eg where biological monitoring is conducted in the lead industry.
The focus of company schemes was generally to prevent or rehabilitate injury, or to ensure fitness for duty. Outcomes for both the company and government schemes, in terms of identifying occupational disease and illness, have not been clearly defined.

Identification of minimum data set

As the outcomes of the schemes have not been clearly defined, the type of data collected is often unsuitable or incomplete.

There is inconsistency in the identifying data used and this limits the cross-linking to other data sets. Privacy legislation impacts on the data collected.

There is limited exposure data held electronically and little or no correlation between health information and exposure data either at the Government or company level. The data currently held in electronic data sets limits both the following of individuals and the identification of trends.

Data capture mechanisms

Electronic data capture mechanisms are limited for company schemes. Government schemes hold electronic records.

There is a need for company schemes to be organised so that data can be analysed to establish trends and allow following of individuals. This includes the electronic storage of health and exposure data.

The limited exposure data that is collected in an electronic data set makes it difficult to establish a relationship between occupational exposure and disease particularly when there may be lifestyle factors that also affect the likelihood of disease.

If electronic data capture is to be more widely established, consideration needs to be given to privacy concerns, costs and resources and the potential for litigation for compensation.

Compatible data capture mechanisms using a consistent data set need to be developed.

Analysis and reporting requirements

There is limited analysis and reporting from the current schemes. This limits any ability by companies or others to manage the risks. Information currently collected from medicals and workers compensation, if available in a suitable form, could be used pro-actively to improve the health of workers in the mining industry.

Occupational health surveillance data in the Australian mining industry is fragmented, collected for different purposes and limited analysis has been undertaken to enable the industry to identify or respond to illness or disease. However, company systems and legislative schemes can provide a vital foundation for a national system.

Phase two

In phase two of the project, four areas have been identified as being appropriate to progress as part of the MICI health project. At the end of phase one, advice was sought from the Health Working Group of the Minerals Council of Australia on the direction forward to ensure appropriate and useable outcomes. Work in the following four areas is currently in progress.

1. scope out SWOT for tracking models that are available;
2. investigate the potential for developing a comprehensive job exposure matrix (JEM) for the minerals industry;
3. development of occupational disease and illness metrics; and
4. provision of best practices guidelines for management of occupational health.

Scope out SWOT for tracking models that are available

This outlines the models that are available within Australia and internationally and identify the strengths, weaknesses, opportunities and threats (SWOT) of the current systems. It will provide information for decision making on the type of potential models.

The two Australian models that have been considered are Health Watch (for the petroleum industry) and Health Wise (for the aluminium industry). Detailed discussions have been held with the organisations managing the systems and the end-users about the benefits and limitations of the systems (Bofinger, 2004; Health Watch, 2000).

For phase two, the suitability of a tracking system for the occupational illnesses and disease that have been identified as being a priority for the industry based on industry input and consistent with the NOHSC priorities will be considered. These will include:

- noise induced hearing loss,
- respiratory illness,
- musculoskeletal, and
cancers.

Investigate the potential for developing a comprehensive job exposure matrix (JEM) for the minerals industry

A JEM for the minerals industry (MINEJEM) was considered to be potentially beneficial for the industry. This is under further investigation and is initially focussing on the following areas:

- noise; and
- hazardous substance exposure leading to respiratory illness or disease:
 - respirable dust,
 - dust,
 - silica, and
 - heavy metal, eg lead.

The data collected as part of the state-based exposure systems will be considered. These areas and the data available were suggested as a ‘pilot’ study to determine the practically of the system and to allow working out of problems with the system. Information is available on the exposures of these hazards. The challenge is gathering the information and assessing the quality and value of the monitoring information.

JEMs cross-tabulate classified exposure information by chemical agent and occupational class. JEMs are also applied as a general exposure information systems for hazard control, risk quantification and hazard surveillance. The system includes, eg workforce data, and it provides information on the numbers of exposed workers by agent, occupation, and level of exposure. Exposure is described by the prevalence of exposure, eg per cent of workers exposed and the level of exposure among the exposed.

The detailed information that will be considered relating to the data to be used in MINEJEM will include:

- definition of jobs and tasks and what classification is used,
- type of data available,
- quality of data and how this would be assessed,
- methods used for gathering data,
- front-end format for MINEJEM, and
- Occupational Exposure Limits (OEL) that would be used.
The European Chemical Industries Council (CEFIC) has been developing an exposure database for the past four years (Cherrie and Kromhout, 2004). This is being provided to the Australian Minerals industry for evaluation in the first half of 2005. This database could form the base for the JEM.

Development of occupational disease and illness metrics

The aim of metrics or indicators is to provide different stakeholders with information on the effectiveness and efficiency of the management of occupational health and occupational illness and disease.

Occupational health has the potential to be defined by lead indicators. The applicability and appropriateness of lead indicators for occupational illness/disease is open for debate.

There are some general principles governing the choice of indicators that need to be considered:

- indicators should include more than one data source including integration of additional data sources in addition to mainstream outcome health factors, eg:
 - risk factors, and
 - behaviours.
- the focus should be on measuring change as the estimates of absolute levels will vary as information sources evolve and more detailed information becomes available; and
- regular reporting should be undertaken – similar to the current situation for safety statistics.

It is anticipated that the metrics will be based on three areas covering:

- OH policy and infrastructure,
- working conditions, and
- health outcomes.

This would lead to the development of metrics suitable for the Australian minerals industry. These metrics need to include both proactive and reactive measures and will focus on the acute and semi-acute measures – not the long-term measures. It would allow proactive tracking of the management of illness and disease.

Provision of best practices guidelines for management of occupational health

The fourth part of phase two involves interaction with another of the MICI projects. MIRMgate is a metadata system designed to provide high quality information on risk management in a searchable format for the minerals industry.

Information relating to health monitoring and health surveillance is present on the system and as new sources of information become available, these are added. Full details of the MIRMgate system are available on the MISHC website (MISHC, 2005).

A model for demonstrating the interaction of the different stage of the health project has been developed and is shown as Figure 2. Work is being completed in the different areas. This will be used to develop potential metrics to demonstrate management of occupational health from both proactive and reactive aspects.

SUMMARY

The synergies between these four areas will establish the path towards an effective national occupational health surveillance system and the development of effective prevention strategies and policies. The minerals industry will be able to proactively demonstrate management of both occupational health and occupational illness and disease.

The health project as part of MICI is a work in progress. The success of the project is dependent on the cooperation of the different sectors of the industry.

Diagram

```
+-------------------+                  +-------------------+                  +-------------------+
| Exposures and     |                  | Corporate policies,|                  | Occupational       |
| working conditions|                  | procedures,       |                  | illness/disease    |
| identified and    |                  | resources         |                  | identified and     |
| recorded          |                  | Site              |                  | reported           |
|                   |                  | implementation    |                  |                   |
| Exposures and     |                  |                   |                  |                   |
| working conditions|                  |                   |                  |                   |
|                   |                  |                   |                  |                   |
| Detailed research |                  |                   |                  |                   |
| into specific issues |              |                   |                  |                   |
|                   |                  |                   |                  |                   |
|                   |                  |                   |                  |                   |
|                   |                  |                   |                  |                   |
|                   |                  |                   |                  |                   |
|                   |                  |                   |                  |                   |
+-------------------+                  +-------------------+                  +-------------------+
```

FIG 2 - Model for health tracking project.
REFERENCES

