Development of potential dual-action antibacterial agents

Joseph Imre Ambrus
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

Recommended Citation
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Development of Potential Dual-Action Antibacterial Agents

A thesis submitted in partial fulfillment of the requirements for the award of the degree of

Doctor of Philosophy

From

The University of Wollongong

By

Joseph Imre Ambrus

BACHELOR OF MEDICINAL CHEMISTRY (HONOURS)

Supervisor: Prof. John B. Bremner
School of Chemistry
May, 2008
CERTIFICATION

I, Joseph Imre Ambrus, declare that this thesis, submitted in fulfillment of the requirements for the award of Doctor of Philosophy, in the School of Chemistry, Faculty of Science, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution.

Joseph I. Ambrus

30th May, 2008
TABLE OF CONTENTS

CERTIFICATION I

TABLE OF CONTENTS II

LIST OF FIGURES VIII

LIST OF SCHEMES XI

LIST OF TABLES XIV

LIST OF ABBREVIATIONS XV

PUBLICATIONS XIX

ACKNOWLEDGEMENTS XX

ABSTRACT XXII

CHAPTER 1 INTRODUCTION 1

1.1 Background: Bacteria and Antibacterial Agents 1

1.2 Molecular Targets of Antibacterial Agents 2

1.2.1 Antibacterial Agents Targeting Bacterial Cell Wall Biosynthesis 3

1.2.2 Inhibition of Bacterial Protein, RNA or DNA Synthesis 4

1.2.3 Inhibition of DNA Synthesis, Replication and Repair 5

1.3 Mechanisms of Bacterial Resistance 6
1.3.1 Antibiotic Inactivation
1.3.2 Target Alteration
1.3.3 Decreased Intracellular Drug Concentration

1.4 Bacterial Efflux Pumps
1.4.1 Families of Efflux Pumps
1.4.1.1 The ATP-Binding-Cassette (ABC) Family
1.4.1.2 The Small Multidrug Resistance (SMR) Family
1.4.1.3 Multidrug and Toxic Compound Extrusion (MATE) Family
1.4.1.4 The Resistance Nodulation Cell Division (RND) Family
1.4.1.5 The Major Facilitator Superfamily (MFS)
1.4.1.5.1 The NorA Efflux Pump and the Staphylococcus aureus bacterium
1.4.2 Mechanism of Substrate Recognition and Efflux
1.4.2.1 Substrate Recognition
1.4.2.2 Mechanism of Substrate Efflux
1.4.2.2.1 The AcrA-AcrB-TolC Efflux Pump in Escherichia coli
1.4.3 Efflux Pump Inhibitors

1.5 Dual Action Approaches to Antibacterial Drug Design
1.5.1 Design Principle of Dual Action Antibacterial Agents

1.6 Aims

CHAPTER 2 INHIBITORS OF THE NORA EFFLUX PUMP IN
STAPHYLOCOCCUS AUREUS

2.1 Design Criteria
2.1.1 Target Compounds

2.2 Synthetic Approaches to 5-Nitro-2-phenylindole (INF55)

2.3 Synthesis of 2-Aryl Substituted Analogues (Y) of INF55
2.3.1 Synthetic Target
2.3.2 Investigation of N-Acylation of Indoles
2.3.2.1 Alkylation of Ester Protected Phenols
2.3.2.2 Ester Hydrolysis
2.3.2.3 N-Acylation of Indole Derivatives
2.3.3 Cyclisation of N-Acyl Indoles
2.3.3.1 Alternative Cyclisation Reactions
2.3.3.2 Optimisation of Cyclisation Reaction 53
2.3.4 Amide Hydrolysis of Cyclised Indoles 58
2.3.5 Selective Reduction of Carboxylic Acid Derivatives 59
2.3.6 Bromination of Hydroxymethyl Indole Derivative 60

2.4 Alternative Synthetic Approaches to INF55 Analougues 62
 2.4.1 Attempted Intramolecular Heck-Style Coupling 62
 2.4.2 Attempted C2 Iodination of 5-Nitroindole 63
 2.4.3 Attempted C2 Iodination of 1-Benzoyl-5-nitro-1H-indole 68
 2.4.4 Attempted C2 Arylation of 1-Benzoyl-5-nitro-1H-indole 71
 2.4.5 Mundy Rearrangement 73
 2.4.5.1 Retrosynthetic Analysis of the Target 74
 2.4.5.2 Attempted Mundy Rearrangement 78

2.5 Synthesis of C5 Substituent Analougues (X) of INF55 81
 2.5.1 C5 Analougues Derived from Selective C2-Arylation of 5-Substituted Indoles 84
 2.5.1.1 Synthesis of 2-Phenyl-1H-indole-5-carbonitrile 86
 2.5.1.2 Synthesis of Methyl 2-Phenyl-1H-indole-5-carboxylate 87
 2.5.1.3 Synthesis of 2-Phenyl-1H-indole-5-carboxylic Acid 88
 2.5.1.4 Synthesis of (2-Phenyl-1H-indol-5-yl)-methanol 89
 2.5.2 C5 Analougues Derived from Selective C5 Substitution of 2-Phenylindole 90
 2.5.2.1 Synthesis of 5-Nitro-2-phenyl-1H-indole 90
 2.5.2.2 Synthesis of 2-Phenyl-1H-indole-5-sulfonyl Chloride 94
 2.5.2.3 Synthesis of Methyl 2-Phenyl-1H-indole-5-sulfonate 95
 2.5.2.4 Synthesis of Propyl 2-Phenyl-1H-indole-5-sulfonate 95
 2.5.2.5 Synthesis of 2-Phenyl-1H-indole-5-sulfonamide 96
 2.5.2.6 Synthesis of 2-Phenyl-1H-indole-5-sulfonic Acid 96

CHAPTER 3 POTENTIAL DUAL ACTION DRUGS TARGETING GRAM-POSITIVE AND GRAM-NEGATIVE BACTERIAL EFFLUX PUMPS. 98

3.1 Background – Dual Action Drug Design 98

3.2 Synthetic Targets 102
 3.2.1 Dual Action Drugs Targeting Gram-Positive Bacteria 102
 3.2.2 Dual Action Drugs Targeting Gram-Negative Bacteria 105
 3.2.2.1 Literature Inhibitors of RND Efflux Pumps 106
 3.2.2.2 Target Dual Action Compounds 109
3.3 Synthesis of Potential Dual Action Drugs Targeting Gram-Positive Bacteria 114

3.3.1 Synthesis of 83 114

3.3.1.1 Esterification of Ciprofloxacin 114
3.3.1.2 Alkylation of Ciprofloxacin Esters 115
3.3.1.3 Ester Hydrolysis Reactions 116

3.3.2 Synthesis of 84 118

3.3.2.1 Model Reaction using 5-Nitroindole 118
3.3.2.2 Attempted Synthesis of 84 121

3.4 Synthesis of Dual Action Drugs Targeting Gram-Negative Bacteria 124

3.4.1 Synthesis of the Gram-Negative Inhibitor NMP (89) 124

3.4.1.1 Alkylation of Boc-Piperazine 125
3.4.1.2 Deprotection of 97 to Afford NMP (89) 126

3.4.2 Synthesis of Target Dual Action Drug 90 127

3.4.2.1 N-Alkylation of 93 128
3.4.2.2 Ester Deprotection to Form Target Dual Action Drug 90 129

3.4.3 Synthesis of Other N-Aryl-Ciprofloxacin Based Dual Action Drugs 131

3.4.3.1 N-Alkylation of Ciprofloxacin Ethyl Ester (93) with Alkyl Halides 131
3.4.3.2 Ester Deprotection to Generate the Target Carboxylic Acids 132

3.4.4 Synthesis of Dual Action Drug Target 91 133

3.4.4.1 Synthesis of α-Bromo Acid Fragment 134
3.4.4.2 Attempted Alkylation of the α-Bromo Acid Derivative 110 with the Ester 93 136
3.4.4.3 Synthesis of α-Bromo Amide Fragment 141
3.4.4.4 Synthesis of the Ester Protected Target Dual Action Target 148
3.4.4.5 Hydrolysis to Form the Desired Target Dual Action Drug 91 149

CHAPTER 4 POTENTIAL DUAL ACTION PRODRUGS TARGETING GRAM-POSITIVE EFFLUX PUMPS 151

4.1 Introduction to Dual Action Prodrugs 151

4.2 Target Dual Action Drugs 153

4.2.1 Design of Site Specific Dual Action Prodrugs 153

4.3 Synthesis of Target Dual Action Prodrug 122 158

4.3.1 Synthesis of Synthon 124 158

4.3.1.1 Boc Protection of Ciprofloxacin (9) 159
4.3.1.2 Attempted Alkylation of Boc-Ciprofloxacin (126) with p-Nitrobenzyl Alcohol (127) 160
4.3.1.3 Bromination of p-Nitrobenzyl Alcohol 161
4.3.1.4 Attempted Alkylation of Boc-Ciprofloxacin (126) with p-Nitrobenzyl bromide (128) 162
4.3.1.5 Deprotection of 128 163
4.3.2 Sulfonation Reaction to Form Synthon 123 164
4.3.3 Alkylation of 123 165
4.3.4 Deprotection of 131 167

CHAPTER 5 BIOLOGICAL RESULTS AND SAR ANALYSIS 168

5.1 Antibacterial Testing 168

5.2 Efflux Pump Inhibitory Activity against the NorA Efflux Pump in S. Aureus 168
 5.2.1 Direct Antibacterial Activity 170
 5.2.2 NorA Efflux Pump Inhibitory (EPI) Activity and SAR 171

5.3 Dual Action Drugs Targeting the NorA Efflux Pump 173

5.4 Dual Action Drugs Targeting RND Efflux Pumps 176

CHAPTER 6 CONCLUSIONS AND FUTURE DIRECTIONS 179

6.1 Conclusions 179

6.2 Future Directions 181

CHAPTER 7 EXPERIMENTAL 183

7.1 General Procedures 183
 7.1.1 Experimental Procedures, Reagents and Solvents 183
 7.1.2 Analytical Thin Layer Chromatography (TLC), Column Chromatography and Preparative
 TLC and Microwave Reactions 184
 7.1.3 Characterisation and Instrumentation 184
 7.1.3.1 Nuclear Magnetic Resonance (NMR) Spectroscopy 184
 7.1.3.2 Mass spectrometry (MS) 185
 7.1.3.3 Melting points 185

7.2 Synthesis of Indole-Based Inhibitors of the NorA Efflux Pump (Chapter 2) 186

7.3 Synthesis of Potential Dual Action Drugs (Chapter 3) 225
 7.3.1 Synthesis of Dual Action Drugs Targeting Gram-Positive Efflux Pumps 225
7.4 Synthesis of a Potential Dual Action Prodrug Targeting Gram-Positive Efflux Pumps (Chapter 4)
LIST OF FIGURES

Figure 1-1: Molecular targets for antibacterial agents.. 3
Figure 1-2: The three major mechanisms of bacterial resistance.11 (1) Antibiotic inactivation; (2) Antibiotic alteration; (3) Decreased intracellular drug accumulation... 7
Figure 1-3: The five families of bacterial efflux pumps;37 ABC – ATP-binding cassette superfamily; MFS – Major facilitator superfamily; MATE – Multidrug and toxic compound extrusion family; SMR – Small multidrug resistance family; RND – Resistance-nodulation-cell division superfamily .. 11
Figure 1-4: Regulation of the QacA efflux pump by its regulatory protein, QacR87 18
Figure 1-5: Multiple binding sites of the QacR repressor protein.100 Ribbon diagrams show the QacR protein bound to (a) ethidium; (b) rhodamine G; and (c) dequalinium. 19
Figure 1-6: Proposed structure of the AcrAB-ToIC efflux pump in E. coli. The AcrA protein is shown as a dotted line, the AcrB protein is denoted in blue and pink, and the ToIC protein is shown as an orange block108 ... 21
Figure 1-7: Structure of the AcrB protein showing the substrate access to the binding site (green). In stage (A), the vestibule is open to the cytoplasm. At stage (B), drug molecules can now enter the drug binding site through the vestibule. At stage (C), the drug can leave the protein through the outer channel102 ... 22
Figure 1-8: Proposed mechanism for substrate efflux from AcrB. The left structure shows the drug entering the open vestibule. In the middle state, the drug can enter the drug binding pocket through the extended vestibule. In the right state, the drug can now access the inner channel and is expelled from the AcrB protein108 ... 22
Figure 1-9: General dual action drug and dual action prodrug design of ciprofloxacin-based antibacterial agents .. 30
Figure 2-1: Top image133 shows the Staphylococcus aureus bacteria (blue spheres). The bottom image134 shows a S. aureus infection with the characteristic yellow colour... 33
Figure 2-2: Proposed regions of modification on the INF55 nucleus 36
Figure 2-3: Possible sites of attachment for dual action preparations containing INF55 analogues 36
Figure 2-4: Reported literature syntheses of 5-nitro-2-phenyl-1H-lindole (24) 38
Figure 2-5: Target compound 25 .. 39
Figure 2-6: Mechanism of DCC acylation of indole to generate amides. B denotes the base, DMAP 46
Figure 2-7: Proposed mechanism of catalyst deactivation via aggregation of Pd(0). Adapted from reference 168...55
Figure 2-8: Proposed mechanism for borane reduction of carboxylic acids to primary alcohols..................59
Figure 2-9: Mechanism for the conversion of primary alcohols to alkyl halides using CBr3 and PPh3........61
Figure 2-10: Retrosynthetic analysis of 52..63
Figure 2-11: Expansion of the aromatic region of the 1H-NMR of 60. * denotes the presence of CDCl3...66
Figure 2-12: Expansion of the gCOSY spectrum of 59 ..70
Figure 2-13: Expansion of the 1H-NMR spectrum of 67. Relative integrations are given below the spectrum...79
Figure 2-14: Expansion of the gCOSY spectrum of 68 ..80
Figure 2-15: Potential methods to accessing analogues of the lead inhibitor, INF55 (24)....................82
Figure 2-16: Method 1 to access C5 substituted indole analogues: Selective C2 arylation of 5-substituted indoles. Electron withdrawing analogues are shown in blue, electron donating analogue is shown in red...83
Figure 2-17: Method 2 to access C5 substituted indole analogues: Selective C5 substitution of 2-phenylindole (74). Electron withdrawing analogues are shown in blue ...84
Figure 2-18: The proposed catalytic cycle for the rhodium catalysed C2 arylation of indoles based on the work by Wang et al.180 L represents the phosphine ligand, [p-(CF3)C6H4]3P. The (coe) ligand represents cis-cyclooctene ..86
Figure 2-19: Active sites for electrophilic aromatic substitution of 2-phenylindole (74).........................90
Figure 2-20: Expansion of the gCOSY spectrum of 80 ..93
Figure 3-1: Dual action drug design. The dual action drug (shown in blue and yellow) is free to diffuse across biological membranes to access its targets. The ‘Drug 1’ component of the dual action drug can interact with its biological target and the ‘Drug 2’ component can interact with its particular biological target...99
Figure 3-2: SAR studies on fluoroquinolone based antibacterial agents131 ...100
Figure 3-3: Retrosynthetic analysis of the target dual action drug 83 incorporating the INF55 analogue (25; blue) with the fluoroquinolone ciprofloxacin (9; red)...103
Figure 3-4: Retrosynthetic analysis of the target dual action drug target (84), incorporating INF55 (24) with the fluoroquinolone 9 ...104
Figure 3-5: Image195 of Pseudomonas aeruginosa bacteria..105
Figure 3-6: A P. aeruginosa infection of the foot196 ...105
Figure 3-7: Optimisation of the RND efflux pump inhibitor lead MC-207,110 (85)107
Figure 3-8: Image211 of Escherichia coli bacteria...109
Figure 3-9: Retrosynthesis of 90 which incorporates the Gram-negative efflux pump inhibitor NMP (89; blue) and the fluoroquinolone, ciprofloxacin (9; red). The chimeric region is show in black...110
Figure 3-10: Design basis for the inhibitor moiety of dual action drugs based on the inhibitor 87. Region 1 is shown in red, Region 2 is shown in blue, and Region 3 is shown in green........ 111

Figure 3-11: Retrosynthesis of the dual action 'chimeric' drug 91, incorporating a mimic of the Gram-negative inhibitor MC-04,124 (blue) with the fluoroquinolone ciprofloxacin (9; red). The 'hybridised' region is shown in black ... 113

Figure 3-12: Mechanism for the formation of the aminal 96 ... 120

Figure 3-13: Formation of compound 98 .. 123

Figure 3-14: Expansion of the gHSQC of 101, showing line broadening of the piperazinyl C2 carbon 126

Figure 3-15: Mechanism of the α-bromination of homophenylalanine (109).. 136

Figure 3-16: Aromatic region of the 1H-NMR spectrum of the compound isolated in the attempted synthesis of 111. * denotes the presence of d-chloroform in addition to the proton signal..... 138

Figure 3-17: Expansion of the aliphatic region of the 1H-NMR spectrum of the product formed in the attempted synthesis of 111. Relative integration is shown below the spectrum 139

Figure 3-18: Expansion of the gHSQC of 112, highlighting the doubling of both the piperazinyl proton and carbon signals ... 140

Figure 3-19: Mass spectrum isolated from the attempted synthesis of 114 .. 142

Figure 3-20: Mass spectrum of lower Rf product from the attempted synthesis of 114 143

Figure 3-21: 1H-NMR spectrum of the product obtained during the attempted synthesis of 118 145

Figure 3-22: Possible structures for the products 119 and 120 obtained by the attempted acylation of 110 .. 146

Figure 3-23: Expansion of the gHSQC NMR spectrum of 120, showing the characteristic OCH3 coupling ... 146

Figure 4-1: Diagrammatic representation of the prodrug concept.. 152

Figure 4-2: Diagrammatic representation of a dual action prodrug approach to drug design 152

Figure 5-1: Diagrammatic representation of the efflux pump inhibition assay. (a) shows administration of an efflux sensitive antibiotic to an efflux pump expressing bacterium. (b) shows the administration of an antibiotic in the presence of an efflux pump blocker (inhibitor) ... 169
LIST OF SCHEMES

Scheme 2-1: Synthesis of 2-(o-indolyl)-benzoic acid via acylation, cyclisation and amide hydrolysis39
Scheme 2-2: Optimised synthesis of INF55 analogues, with an ortho substituent handle to use in dual
action antibacterial agents ..40
Scheme 2-3: Alkylation of ester protected phenol derivatives ..42
Scheme 2-4: Ester Hydrolysis of 27 - 31 ...43
Scheme 2-5: Reaction of the indoles 37 and 38 with various carboxylic acids in the presence of
DCC/DMAP ...47
Scheme 2-6: Cyclisation conditions for N-acyl indole derivatives 39 and 43 ..49
Scheme 2-7: Mechanism for the palladium induced oxidative cyclisation of 3950
Scheme 2-8: Optimisation of Pd mediated cyclisation reaction ..56
Scheme 2-9: Amide hydrolysis of the cyclised indole 52..58
Scheme 2-10: Selective carboxylic acid reduction of 54 to 55 ...60
Scheme 2-11: Bromination of benzyl alcohol 55 ..61
Scheme 2-12: Attempted regioselective C2 iodination of 37 ...64
Scheme 2-13: Proposed mechanism for C2-lithiation of indole 37 using carboxylate as a transient N-
protecting group and α-carbanion stabilising group ..65
Scheme 2-14: Proposed mechanism for the C4 iodination of 5-nitroindole (37)68
Scheme 2-15: C2 Iodination of the N-acyl indole 39 ..69
Scheme 2-16: Proposed mechanism for the deprotection and C3 iodination of 3971
Scheme 2-17: Attempted direct C2 amination of 39 ...72
Scheme 2-18: Boc protection of 37 ...72
Scheme 2-19: Attempted C2 amination of 61 ..73
Scheme 2-20: General scheme for the Mundy rearrangement of N-acyl lactams to generate 2-
substituted imines ...74
Scheme 2-21: Retrosynthetic analysis of the synthesis of 5-nitro-2-phenylindole (24) using the Mundy
rearrangement as the lynch-pin of the synthesis ..75
Scheme 2-22: General method for the synthesis of the 64 ..75
Scheme 2-23: General scheme for the N-acylation of 5-nitro-2-oxindole (65)77
Scheme 2-24: Attempted Mundy rearrangement on the N-acyl lactam 6678
Scheme 4-1: Mechanism for the expulsion of the C3 leaving group on the cephalosporin nucleus upon rupture of the β-lactam bond by the β-lactamase enzyme (red). LG (blue) denotes a leaving group...155
Scheme 4-2: Postulated possible hydrolytic mechanism to release the second biological compound, the efflux pump inhibitor ...156
Scheme 4-3: Retrosynthetic analysis of the target drugs 122 ..157
Scheme 4-4: Projected synthesis of synthon 124 ..159
Scheme 4-5: Boc protection of 9 ...160
Scheme 4-6: Attempted esterification of 125 using the alcohol 126161
Scheme 4-7: Bromination of p-nitrobenzyl alcohol (127) ...161
Scheme 4-8: Esterification of 126 with p-nitrobenzyl bromide (129)162
Scheme 4-9: TFA deprotection of 128 to form the free amine 124163
Scheme 4-10: Sulfonylation of amine 125 with the chlorosulfonyl indole 75164
Scheme 4-11: Displacement of the chloro substituent with excess base to afford the pyridinium compound 130 ...165
Scheme 4-12: Alkylation of 124 with 123 to give the protected version (131) of the target 122 ..166
Scheme 4-13: Full deprotection of ester 131 to give the target dual action prodrug 122167
LIST OF TABLES

Table 1-1: Major efflux pumps found in *S. aureus* ... 16
Table 2-1: Selection criteria for lead inhibitor ... 35
Table 2-2: MIC for lead INF55 analogue 26 against knockout, wild-type and overexpressing NorA strains of *S. aureus* ... 41
Table 2-3: Conditions and yields for the alklation of various esters to generate esters 27 - 31 42
Table 2-4: Conditions and yields for the hydrolysis of esters 27 - 31 .. 44
Table 2-5: Conditions and yields for the N-acylation of indoles 37 and 38 with various carboxylic acids .. 48
Table 2-6: Varied conditions for the intramolecular cyclisation of 39 and 40 52
Table 2-7: Varying conditions for the cyclisation of 43 to 53 .. 56
Table 2-8: Conditions for the N-acylation of 63 .. 76
Table 2-9: Conditions or the N-acylation of 5-nitro-2-oxindole (65) .. 77
Table 4-1: Conditions for the esterification of 126 with 129 ... 162
Table 5-1: Inherent antibacterial MIC values (μM) in *S. aureus* for the synthetic inhibitors. “-” indicates antibacterial activity was > 1000 μM (testing limit employed in this assay). KO denotes a NorA pump knock out strain, WT denotes a wild-type strain and OE denotes an overexpressing strain .. 170
Table 5-2: NorA efflux pump inhibitory MIC values (μM). “-” indicates no potentiation of berberine was observed. 1A indicates the inhibitor had intrinsic antibacterial activity therefore an accurate inhibitory MIC could not be determined. KO, WT and OE stand for knockout, wild-type and overexpressing respectively .. 172
Table 5-3: Direct antibacterial MIC (μM) of the dual action drugs targeting the NorA efflux pump 174
Table 5-4: Direct antibacterial MIC (μM) of the dual action drugs targeting the Gram-negative efflux pumps. Compounds 89, 90 and 91 were all tested as their hydrochloride salts 177
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5′-MHC-D</td>
<td>5′-Methoxyhydnoocarpin-d</td>
</tr>
<tr>
<td>13-CPTC</td>
<td>13-Cyclopentylthio-5-hydroxytetracycline</td>
</tr>
<tr>
<td>ABC</td>
<td>ATP-binding cassette</td>
</tr>
<tr>
<td>Abq</td>
<td>AB quartet</td>
</tr>
<tr>
<td>Ac</td>
<td>Acetyl</td>
</tr>
<tr>
<td>AcOH</td>
<td>Acetic acid</td>
</tr>
<tr>
<td>ADME</td>
<td>Absorption, distribution, metabolism, excretion</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosine diphosphate</td>
</tr>
<tr>
<td>AIBN</td>
<td>Azobisisobutylonitrile</td>
</tr>
<tr>
<td>ala</td>
<td>Alanine</td>
</tr>
<tr>
<td>asn</td>
<td>Asparagine</td>
</tr>
<tr>
<td>asp</td>
<td>Aspartic acid</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>bd</td>
<td>Broad doublet</td>
</tr>
<tr>
<td>Bn</td>
<td>Benzyl</td>
</tr>
<tr>
<td>boc</td>
<td>tert-Butoxycarbonyl</td>
</tr>
<tr>
<td>bs</td>
<td>Broad singlet</td>
</tr>
<tr>
<td>B. subtilis</td>
<td>Bacillus subtilis</td>
</tr>
<tr>
<td>calcd</td>
<td>Calculated</td>
</tr>
<tr>
<td>CAN</td>
<td>Ceric ammonium nitrate</td>
</tr>
<tr>
<td>CI</td>
<td>Chemical ionisation</td>
</tr>
<tr>
<td>coe</td>
<td>Cis-cyclooctene</td>
</tr>
<tr>
<td>conc</td>
<td>Concentrated</td>
</tr>
<tr>
<td>d</td>
<td>Days or doublet (when used during NMR assignments)</td>
</tr>
<tr>
<td>dd</td>
<td>Doublet of doublets</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>ddd</td>
<td>Doublet of doublet of doublets</td>
</tr>
<tr>
<td>DBU</td>
<td>1,8-Diazabicyclo[5.4.0]undec-7-ene</td>
</tr>
<tr>
<td>DCC</td>
<td>Dicyclohexylcarbodiimide</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>dd</td>
<td>doublet of doublets</td>
</tr>
<tr>
<td>DEPT</td>
<td>Distortionless enhancement by polarisation transfer</td>
</tr>
<tr>
<td>DIBAL</td>
<td>Diisobutylaluminium hydride</td>
</tr>
<tr>
<td>DMAP</td>
<td>Dimethylaminopyridine</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dt</td>
<td>Doublet of triplets</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EDCI</td>
<td>1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide</td>
</tr>
<tr>
<td>EI</td>
<td>Electron impact</td>
</tr>
<tr>
<td>EPI</td>
<td>Efflux pump inhibitor</td>
</tr>
<tr>
<td>eq</td>
<td>Equivalents</td>
</tr>
<tr>
<td>ESI</td>
<td>Electrospray ionisation</td>
</tr>
<tr>
<td>Et</td>
<td>Ethyl</td>
</tr>
<tr>
<td>Et₂O</td>
<td>Diethyl ether</td>
</tr>
<tr>
<td>EtOAc</td>
<td>Ethyl acetate</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Gas chromatography – mass spectrometry</td>
</tr>
<tr>
<td>gCOSY</td>
<td>Gradient correlation spectroscopy</td>
</tr>
<tr>
<td>gHMBC</td>
<td>Gradient heteronuclear multiple bond correlation</td>
</tr>
<tr>
<td>gHSQC</td>
<td>Gradient heteronuclear single quantum correlation</td>
</tr>
<tr>
<td>glu</td>
<td>Glutamic acid</td>
</tr>
<tr>
<td>H</td>
<td>Hydrogen/proton</td>
</tr>
<tr>
<td>h</td>
<td>Hours</td>
</tr>
<tr>
<td>HOBT</td>
<td>1-Hydroxybenzotriazole</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>HRMS</td>
<td>High resolution mass spectrometry</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>J</td>
<td>Coupling constant</td>
</tr>
<tr>
<td>lac</td>
<td>Lactate</td>
</tr>
<tr>
<td>LG</td>
<td>Leaving group</td>
</tr>
<tr>
<td>Lit.</td>
<td>Literature</td>
</tr>
<tr>
<td>LRMS</td>
<td>Low resolution mass spectrometry</td>
</tr>
<tr>
<td>Lys</td>
<td>Lysine</td>
</tr>
<tr>
<td>m</td>
<td>Multiplet</td>
</tr>
<tr>
<td>MATE</td>
<td>Multidrug and toxic compound extrusion</td>
</tr>
<tr>
<td>MDR</td>
<td>Multidrug resistance (or resistant)</td>
</tr>
<tr>
<td>Me</td>
<td>Methyl</td>
</tr>
<tr>
<td>MeOH</td>
<td>Methanol</td>
</tr>
<tr>
<td>MFS</td>
<td>Major facilitator superfamily</td>
</tr>
<tr>
<td>MIC</td>
<td>Minimum inhibitory concentration</td>
</tr>
<tr>
<td>mmol</td>
<td>Millimole</td>
</tr>
<tr>
<td>m.p.</td>
<td>Melting point</td>
</tr>
<tr>
<td>MRSA</td>
<td>Methicillin-resistant Staphylococcus aureus</td>
</tr>
<tr>
<td>MS</td>
<td>Mass spectrum</td>
</tr>
<tr>
<td>MW</td>
<td>Molecular weight</td>
</tr>
<tr>
<td>m/z</td>
<td>Mass to charge ratio</td>
</tr>
<tr>
<td>n-BuLi</td>
<td>n-Butyllithium</td>
</tr>
<tr>
<td>NMP</td>
<td>N-Methylpyrrolidone</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>PABA</td>
<td>p-Aminobenzoic acid</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>Pseudomonas aeruginosa</td>
</tr>
<tr>
<td>pH</td>
<td>Potential of hydrogen</td>
</tr>
<tr>
<td>Ph</td>
<td>Phenyl</td>
</tr>
<tr>
<td>Phe</td>
<td>Phenylalanine</td>
</tr>
<tr>
<td>piv</td>
<td>Pivalate</td>
</tr>
<tr>
<td>PNB</td>
<td>p-Nitrobenzyl</td>
</tr>
<tr>
<td>PPA</td>
<td>Polyphosphoric acid</td>
</tr>
</tbody>
</table>
ppm Parts per million
Rf Retention factor
RNA Ribonucleic acid
RND Resistance-nodulation division
rRNA Ribosomal ribonucleic acid
r.t. Room temperature
s Singlet
SAR Structure-activity relationship
S. aureus *Staphylococcus aureus*
SMR Small multidrug resistance
t Triplet
TBAB Tetrabutylammonium bromide
TBAI Tetrabutylammonium iodide
td Triplet of doublets
TEA Triethylamine
TFA Trifluoroacetic acid
THF Tetrahydrofuran
TLC Thin layer chromatography
TMS Tetramethylsilane
tRNA Transfer ribonucleic acid
tyr Tyrosine
UV Ultraviolet
VLC Vacuum liquid chromatography
WT Wild-type (bacterial strain)
δ Chemical shift (in parts per million, downfield from TMS)
Publications arising from this work to date:

Journal articles:

Selected Conference Abstracts:

ACKNOWLEDGEMENTS

I would like to take this opportunity to acknowledge all those who have aided me in completion of this Ph.D. project. This project has been the most challenging task I have undertaken in my life, with many highs and lows along the way. It has been the generous help and support from many people that has shaped the success of this project and I would like to express my heart-felt thanks to the following people:

To my supervisor, Professor John Bremner, I would like to extend my deepest gratitude for all that you have contributed to my project. I am ever grateful and appreciative of all your guidance, advice, support, encouragement, sacrifice and wisdom which you contributed without question at all stages throughout my studies. It has truly been an honour to work under your inspirational supervision over the past 5 years, in which your endless knowledge and passion for chemistry always shone through. I wish you all the best for your future retirement and hope you look back at your career with the same admiration and high esteem that we, your colleagues, have for your work. I would also like to take this opportunity to also thank Prof. Steve Pyne for his supervision during the six months John was away.

I am deeply indebted to Professor Kim Lewis, Dr. Gabriele Casadai and Mr. Anthony Ball at Northeastern University, Boston, USA, for all their microbiological expertise and their bacterial multidrug resistance pump inhibitory testing and antibacterial testing of compounds made in this project. It has been a very fruitful multidisciplinary collaboration which I have appreciated and taken a lot from. I would also like to take this opportunity to thank Otsuka Chemicals for the extremely generous donation of the β-lactam intermediate used in this project.

There were many people who contributed to teaching me the finer art of organic chemistry. In particular, the efforts of Dr. Siritron Samosorn, Dr. Waya Sengpracha, Dr. Jane Faragalla, Dr. Johana Mberre and Dr. Julie Locke are deeply valued. Not only did these mentors teach me many invaluable laboratory skills in the early stages of my career, but their friendship, laughs and fun times will be fondly remembered. I look forward to keep in contact with all you in the future and following the development of your respective careers. To all the other researchers who have worked in the Bremner research group over the years, I would like to thank you for the hard-working, stimulating and fun environment which you created which was a pleasure to work in. This thanks also extends to everyone within the School of Chemistry at Wollongong. It has been a fantastic working environment and I know I will miss everyone here when I take the next step in my career.
The behind-the-scenes work of many technical staff is quite often overlooked, yet it is essential to the smooth-running of the School as a whole. In particular, I would like to acknowledge Dr. Wilford Lie and Ms. Sandra Chapman for their assistance with NMR spectroscopy, and Dr. John Korth, the late Mr. Larry Hick, Ms. Karin Maxwell and Mr. Roger Kanitz for their mass spectroscopy support.

Finally, I would like to extend my appreciation to those who have provided me with emotional support and friendship throughout my studies. There are too many people to name, but I would like to make special mention of Mr. Karl Heys, Mr. Nick Deutscher, Mr. Mick Friedrich, Mr. Steve Parkes and Mr. Andrew Stevens for their friendship, many lengthy discussions about the pro's and con's of Ph.D. candidature as well as our various sporting fixtures which kept me sane and balanced throughout the later stages of my project. To Ms. Fiona Louie, Ms. Robin Stone, Mrs Cindy Casado and all the members of HoC and Write Club, thank you for not only your friendship but also your support this year. In particular, I would like to make special mention of Ms. Clare Perkins, who bore the brunt of my ‘difficult times’. You were always sympathetic to my complaints and responded with support and encouragement and I will always remember and be extremely grateful for your emotional support. Finally to my family: Mum, Dad and Steve, thank you for your support, especially the financial aid during the difficult times. I would like to dedicate this work to you and I hope you are as proud of it as I am to be a part of our wonderful family.

ABSTRACT

“Development of Potential Dual-Action Antibacterial Agents.”

Joseph I. Ambrus
University of Wollongong, 2008

With the ever-present threat of bacteria becoming resistant to all known antibacterial drugs comes a pressing need to develop new antibacterial agents which circumvent this resistance. One of the major mechanisms of resistance that bacteria employ to compromise the activity of antibacterials is through efflux pumps. These pumps, such as the NorA pump in Staphylococcus aureus, have the ability to extrude a wide range of structurally dissimilar antibiotics, hence conferring multidrug resistance to the bacteria. To date, there have been no therapeutically useful inhibitors of efflux pumps developed and thus there is great scope to develop agents which address this clinically relevant problem.

This dissertation focused on two main strands of research. The first addressed the need for new inhibitors of bacterial efflux pumps. A structure-activity based approach to drug design was utilised, centering on the lead NorA inhibitor 2-phenyl-5-nitro-1H-indole. These synthetic efforts led to the discovery of 2-phenyl-1H-indole-5-carbonitrile (70) as a potential new inhibitor of the NorA pump, with an MIC of 3.6 µM (in the presence of the antibacterial berberine at 100 µg/mL; 269.0 µM) against the NorA wild-type strain of S. aureus. A serendipitous discovery of a novel antibacterial agent, the alcohol (2-phenyl-1H-indol-5-yl)-methanol (75), was made during these studies. This alcohol was found to have a direct antibacterial MIC of 13.4 µM against a NorA pump knockout strain of S. aureus and 28.0 µM against the NorA wild-type and overexpressing strains of S. aureus. This new
compound offers a simple, heterocyclic lead compound for future development as an antibacterial agent.

The inter-related second strand of research took advantage of dual action-based approaches to drug design. Several dual action drugs were synthesised which combined an efflux pump-sensitive antibiotic (ciprofloxacin) and efflux pump inhibitor analogue. Of these compounds, 90, 91 and 96 showed promising antibacterial activities with MIC’s of 0.6, 3.9 and 1.5 μM respectively against all three strains of S. aureus (NorA knockout, NorA wild-type and NorA overexpressing). This data confirmed that these dual action drugs were evading this particular resistance mechanism and helped to validate this principle of dual action drug design.

A novel dual action prodrug was also designed and a protected version synthesised. This prodrug contained the antibiotic (ciprofloxacin) linked to an efflux pump inhibitor analogue through a β-lactam nucleus, which was planned to act as a bacterially-specific triggering mechanism. Future work will involve the complete synthesis and testing of this prodrug 122 to assess its antibacterial activity and to determine if it is acting as a dual action prodrug.

© 2008 by Joseph Imre Ambrus.

All rights reserved.