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Chapter Two: Materials and Methods 

 

For the calibration of in-situ water vapour isotope analysers intended to be operated over a 

range of H2O mixing ratios; a continuous flow calibration system which evaporates whole 

liquid water samples has been designed for field deployment. Whilst a number of systems 

have been designed for this purpose [e.g. Sturm and Knohl (2009); Iannone et al. (2010); 

Rambo et al. (2011)]; to the best of our knowledge, no system has the capability of 

producing unfractionated water vapour at mixing ratios observed in the maritime tropics 

(i.e. between 5 and 45 mmol mol-1). The purpose of this work was therefore to design and 

test an apparatus capable of calibrating an IRIS analyser over H2O mixing ratios spanning 5-

40 mmol mol-1 with an extendable calibration range of up to 45 mmol mol-1. The intended 

aim is therefore producing a calibration device suitable for characterising the performance 

of the analyser in the Maritime Tropics.  

The calibration system designed during this project; is based on a dripper-type device [see; 

(Lee et al. 2005; Lee et al. 2007; Sturm and Knohl 2009; Iannone et al. 2010; Rambo et al. 

2011)] referred to here as a ‘vaporiser’. Operation of the vaporiser involves continuous 

injection of a liquid water standard of known isotopic composition into a stream of heated 

dry instrument air in order to produce vapour standards for calibration. Ideally, liquid H2O 

injected into the vaporiser is evaporated immediately to prevent fractionation effects 

occurring within the system. The resulting water vapour should therefore have the same 

isotopic composition as that of the source water. The vaporiser design has been provided 

below, along with a brief outline of Picarro L1115-I WS-CRDS measurement device. 
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2.1 Vaporiser design 

The following set-up design illustrates the final vaporiser configuration used in this study. In 

order to optimise the vaporiser apparatus, multiple experiments were undertaken involving 

controlled alterations of the vaporiser design. Such experiments are mentioned in detail 

during the ‘vaporiser experiments’ section addressed later in this chapter. Furthermore, any 

divergence from the following experimental design is detailed where appropriate.  

Schematic diagrams of the vaporiser calibration system are shown in Figures 2, 3 and 4 

while figure 5  shows a photographic cross-section for further detail of the system. Figure 2 

shows the vaporiser in which all components are encased inside an aluminium block shown 

by figure 2-P. Figures 3 and 4 show cross-sections of the ‘back sector’ and the ‘front sector’ 

from figure 2 respectively.  All the components of the vaporiser have been listed in Table 1, 

describing the component and the manufacturer where applicable. 

To introduce water vapour standards into the WS-CRDS, source water was evaporated upon 

entry into the vaporiser which was mixed with heated instrument air within the vaporisation 

chamber. The subsequent water vapour exited the vaporiser via a heated copper line and 

was analysed by the WS-CRDS. The flow rate of compressed dry instrument air was 

controlled using a mass flow controller allowing for the gas flow to be adjusted for specific 

flow rates. Gas pressure from the instrument air cylinder was operated at 1 bar, with Teflon 

tubing supplying the dry instrument air to the vaporiser unit. 
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Figure 2  Overall Design of Vaporiser system enclosed in an Aluminium block 

   

Tubing within the aluminium vaporising unit was copper to allow greater conductive heating 

of the air stream (Figure 2, A-D). The copper tubing was coiled around a 1” diameter solid 

copper cylinder in order to provide consistent heating of the gas line and an extended path 

length for the heating of the dry instrument air (Figure 2-F).  

Three separate 200W heating elements; Figure 3–E, were inserted into drilled holes in the 

vaporiser to provide an evenly distributed heat source throughout the unit. The initial 

design, based around one 400W heating element was found to induce temperature 

fluctuations of ± 10°C which was regarded as too unstable for the calibration purposes 

related to this study. The three 200W heating elements functioned through a CAL: 3300 

Proportional Integral Derivative (PID) controller (West Control Solutions, Gurnee, IL, USA) 

using a feedback loop from a Resistance Temperature Detector (RTD) sensor (Figure 2-K). 

Two of these heating elements were placed on either side of the copper coiled gas line 

(Figure 3–E). The third heating element was installed at a close proximity to both the 

vaporisation chamber and the RTD temperature sensor shown by Figure 4–E.  In order to 

provide a constant source of heat when the heating elements had reached the set-point 
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temperature, a 24V (20W) adhesive backed heater mat was positioned around the 

vaporisation chamber with direct contact to the brass chamber (Figure 4-R). 

 

Figure 3 Design of Vaporiser system: Back Sector 

 

An Instech P720/10K peristaltic pump supplied the vaporiser system with liquid H2O 

standards. The peristaltic pump was connected to a collapsible PVC sample bag (Baxter 

Healthcare Ltd., Auckland, NZ); acting as the reservoir for the H2O liquid standard. The 

peristaltic pump was adjustable in terms of liquid flow velocity, allowing for direct control 

over the H2O mixing ratio attainable in the system. An Instech 0.38mm silicone tube-set was 

used as the peristaltic pump compression tubing; giving a flow rate range of 0.8-7.5 μL/min. 

Experiments were performed on the system to determine the optimum diameter of these 

tube-sets regarding precision of the instrument. Further detail is shown later in the 

‘vaporiser optimisation’ section of this chapter.  
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pink marker) as of 8am on the 13th of January 2013. Arrows represent wind direction while 

the blue to red colour scale indicates a decreasing OLR value.  From figure 27, winds from 

the east and west are seen to converge close to 130° E, resulting in thick cloud cover due to 

convective processes over the Darwin ARM site and surrounding regions. This coincides with 

the corrected 5-45 mmol mol-1 data from figure 26 indicating a sharp depletion regime in 

the isotopic values just short of the 13th of January. During this period depleted values of -

140‰ (from -80‰) for δ2H and -22‰ (from -17.5‰) for δ18O are evident, likely attributed 

to the “Amount effect” during periods of intense convergence as mentioned earlier. δ2H 

was plotted against d over this short term weather event for both corrections as shown in 

28. A similar plot was performed by Kurita (2013) regarding sensitivity to relative humidity 

of measurements in which an apparent trend exists between lower δ2H values with an 

increasing d-excess .  Although no such correlation was evident over this weather event, a 

large offset between the two corrections was up to 13 ‰. With this in mind, awareness of 

such a discrepancy is crucial for isotopic studies in water vapour in order to corrected 

measurements.   

 

Figure 26 H2O (mmol mol-1), δ2H‰, δ18O‰ and d‰ Vs. Date collected at the Darwin study site between 7th to the 15th 
of March. Red colour indicates the data corrected for values 5-30 mmol mol-1 while the black colour represents data 
corrected for over the 5 – 45 mmol  mol-1 
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Figure 27 Outgoing Longwave Radiation (W/m2) shown over latitude and longitude on the 13th of January 2013. Arrows 
represent wind direction while the pink marker represents the ARM study site 

 

 

Figure 28 δ2H vs. d  collected at the Darwin study site from the 7th to the 15th of January red dots represent data 
corrected for values 5-30 mmol mol-1 while the black colour represents data corrected for over the 5 – 45 mmol mol-1 
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In terms of quantifying the short term discrepancies between the two correction values, we 

looked at data over timeframes of days rather than months. For δ2H, values of 3‰ were 

observed coinciding with high H2O values of up to 40 mmol mol-1. This maximum 3‰ 

difference between the two corrections makes up only ~2% of the range exhibited by δ2H 

values over the 7 month timeframe. δ18O values had  a maximum difference between the 

two corrected values ~2‰ observed between February and March, however this accounted 

for ~11% of the total range for δ18O over the full dataset. The deuterium excess had a 

maximum discrepancy of ~14‰ during mid to late January and early to mid-March. This 

~14‰ figure equates to a difference of 33% over the measured data. The large differences 

attributed to the two corrections of 5-30mmol-1 and 5-45 mmol mol-1 indicate the necessity 

of applying the new calibration system developed in this study. As an ideal H2O 

concentration dependence calibration must be characterised over the ambient values of the 

measured values  (Schmidt et al. 2010), the vaporiser system has been able to achieve such 

values.  
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Chapter Five: Conclusions and Recommendations for Future Work 

5.1 Conclusions 
 

The central aim of this study was to develop a field deployable continuous flow calibration 

system which evaporates whole liquid water samples over H2O mixing ratios up to 45 mmol 

mol-1. This calibration range was selected in order to coincide with the ambient H2O 

concentrations observed in maritime tropical water vapour. The purpose of developing the 

calibration device in this study was focussed on calibrating measured data from an IRIS 

analyser based on WS-CRDS, in order to correct measurements for H2O concentration 

dependence. Over the course of this study, the following conclusions were drawn: 

The calibration device was optimised via experiments associated with injection tube 

material and vaporiser temperature. Initial findings indicated that system using a copper 

plate as an immediate injection surface was the most suitable due to both precision 

measurements and evaporative stability (with regard to all other materials used). Standard 

deviation analysis further indicated that the ideal temperature to run the vaporiser 

calibration system (with the copper plate installation) was 103°C. Under these conditions 

the vaporiser device (when coupled with a Picarro L1115-I WS-CRDS) was able to produce 

δ18O vapour over 30s averages with standard deviations of 0.15‰ and 1.3‰ at respective 

mixing ratios of ~40 mmol mol-1 and ~5 mmol mol-1. These results however did not match 

the compliance specifications supplied by the Picarro analyser (0.067‰), showing an 

indication of unwanted noise within the system. The vaporiser produced δ2H vapour of 0.2‰ 

and 0.9‰ at respective mixing ratios of ~40 mmol mol-1 and ~5 mmol mol-1. The vaporiser 

data matched the compliance specifications for δ2H (0.46‰) at ~40 mmol mol-1 while not 

complying at ~5 mmol mol-1. However, by increasing data averaging times to 10 minutes, it 

was found that over the concentration range of 5-40 mmol mol-1 the vaporiser system was 

able to match the typical precision (Wen et al. 2012) of δ18O and δ2H at 0.1‰ and 2‰ 

respectively. However, a 20 minute averaging time was required for compliance with the 

Picarro specifications over concentration range of 5-40 mmol mol-1. 

Therefore, the vaporiser system was found to be an effective calibration device over the 

H2O mixing ratios of 5-40 if appropriate averaging times are met. In terms of applying the 
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vaporiser system to measured data of from the Tropical Western Pacific ARM site located at 

Darwin; the calibration system developed in this system was used to characterise the data. 

This new calibration system, spanning H2O mixing ratio values of 5-45mmol mol-1 was 

compared to the former utilised calibration system (5-30 mmol mol-1). By comparing these 

two datasets it was found that a discrepancy between the two corrections showed an 

average of 0.6‰ over the seasonal range while a maximum difference of 3‰ was observed 

during a short term weather event. For δ18O the seasonal data showed an average 

difference of 0.9‰ between the two corrections with a maximum short term discrepancy of 

2‰. Deuterium excess displayed the largest contrast between the two corrections with an 

average seasonal discrepancy of 6.8‰ with a maximum difference observed at 14‰ during 

a convective weather event. Therefore, this study reflects the need for calibration of a WS-

CRDS analyser to be conducted over the full range of ambient H2O mixing ratios. Without 

such a procedure, error is seen as excessive for these high precision measurements 

particularly at high H2O mixing ratios as seen in the tropical maritime climate.  

 

5.2 Limitations and Recommendations for Future work 
 

Key limitations and recommendations for this study and future studies involving the 

calibration of laser-based instruments for measurements of isotopic ratios in tropical water 

vapour are represented in this chapter.  

In terms of optimising the vaporiser calibration system, some essential steps are required in 

order to further validate the system as an accurate and precise calibration device. Firstly, 

known isotopic standards must be used to characterise the vaporiser system regarding 

systematic error and precision in order to completely characterise any possible fractionation 

effects within the system. Although known isotopic standards were used for the H2O 

concentration dependence characterisation for the Darwin based instrument, no such 

standards were available earlier for the optimisation experiments. To coincide with the use 

of isotopic standards for optimisation and precision analysis; cryogenic freezing of water 

vapour produced by the vaporiser is a technique which could be employed to further 

validate the vaporiser as an ideal calibration device. The cold-trapped water can be 
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compared to that of the known isotopic standard (source water) by Isotope ratio mass 

spectrometry (IRMS) (Sturm and Knohl 2009). By assuming no fractionation has taken place 

during the freezing process, this method can provide great insight into the 

presence/absence of fractionation processes within the calibration system. 

As discussed in the results section, the peristaltic pump tubing diameter was mentioned as a 

source of uncertainty due to the cycling processes observed at lower pump speeds. This 

issue was hypothesised to limit the precision of the vaporiser system at the low H2O mixing 

ratios (< 10 mmol mol-1). In order to improve the precision of the vaporiser at these lower 

mixing ratios, further experiments should be undertaken involving the utilisation of a pump 

with less oscillating characteristics at low pump speeds or a completely different pump 

system all together (e.g. a syringe pump) (Tremoy et al. 2011). However, as an initial step; 

the sourcing of a peristaltic pump tube with a smaller diameter may be beneficial in further 

reducing the variation observed in the pump.  

A further limitation was the usage of Picarro standards as a basis to compare precision data 

for the vaporiser system. Although these specifications give a good indication of noise 

within the system, the Picarro specifications are only a guide for this study as they are only 

applicable over H2O mixing ratios of 8-24 mmol mol-1. Regarding the calibration of a WS-

CRDS analyser with the current vaporiser set up, it is recommended that an averaging time 

of at least 10 minutes is used for a full concentration dependence calibration for the tropical 

maritime. If focus is only made at higher mixing ratios i.e. > 30mmol mol-1 this averaging 

time can be significantly reduced to ~2 minutes.  

The vaporiser calibration device developed in this study was tested with a Picarro WS-CRDS 

analyser; however it was not specifically designed to be coupled with only this instrument. 

Therefore, figure 29 has been provided in order to demonstrate a possible conversion of the 

vaporiser system in order to improve its suitability for a calibration of a second commercial 

IRIS analyser. The Los Gatos instrument based on off-axis integrated cavity output 

spectroscopy has been selected to demonstrate such a conversion procedure.   

The most important difference between the WS-CRDS system and the IRIS analysers is the 

discrepancy in the pump rate over the instruments. The Picarro WS-CRDS has a pumping 

rate of  30ml/min while the Los Gatos instrument has a pump rate between 500 and 
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800ml/min (Aemisegger et al. 2012) Therefore, a larger capacity Mass flow controller 

(Figure 29-A)  along with a pump with a greater flow rate to provide saturated water vapour 

for the larger volumes required.  

 

 

Figure 29 Amended design of vaporiser system 

 

Furthermore, Figure 29 shows some basic amendments which may be beneficial to 

improving the function of the vaporiser system. Such amendments include, a molecular 

sieve, used to completely desiccate instrument air. An increase in the length of the copper 

wire to ~3 times that of the current system has also been included to allow further heating 

of the air stream. This feature also involves having the water injection point injection point 

external to the main heat source (to prevent evaporation through the injection tube). An 

RTD sensor is also placed in close proximity to the region of evaporation (under the mixing 

chamber) to give greater control over the heat mat. 
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