The development of radiolabelled peripheral benzodiazepine receptor ligands for imaging cancer and neurodegenerative disorders

Taryn P. Homes

University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

Recommended Citation

NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
The Development of Radiolabelled Peripheral Benzodiazepine
Receptor Ligands for Imaging Cancer and Neurodegenerative
Disorders

Taryn P Homes

A thesis submitted in fulfilment of the requirements
for the award of the degree

Doctor of Philosophy
from
University of Wollongong

Department of Chemistry
December 2007
I, Taryn P. Homes, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Department of Chemistry, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institute.

Taryn P. Homes

December 2007
Acknowledgements

I would like to express my deepest thanks to the following people...

My supervisors Dr Andrew Katsifis (ANSTO) and Assoc. Prof. Paul Keller (UOW) for their time and guidance, and for giving me the opportunity to complete a PhD

AINSE for the partial funding of the project and conference funds

Filomena Mattner for teaching me all the pharmacological methods used in this project

Tien Pham for teaching me how to radiolabel

Xiang Liu and Thomas Bourdier for their help with metabolite studies

Tim Jackson and John Howse for their QC work

The radiopharmaceuticals group at ANSTO, including the pharmacology group for helping with animal studies

The Keller Group for their help and support with presentations

The UOW Department of Chemistry technical staff for running mass specs

Office buddies Mark Ashford, Mitchell Quinlivan, and Pam Sumner for making my PhD a lot of fun, and for their help with writing my thesis

Mum, Dad, Steve, Jared, my best friend Cathy, and Vinh, for being so proud of me

My fiancé Brad Angel for his love and support
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C NMR</td>
<td>Carbon Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>1H NMR</td>
<td>Proton Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>ACN</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>AcOH</td>
<td>Acetic Acid</td>
</tr>
<tr>
<td>AIBN</td>
<td>Azobisisobutyronitrile</td>
</tr>
<tr>
<td>ANT</td>
<td>Adenine Nucleotide Translocase</td>
</tr>
<tr>
<td>Ar</td>
<td>Aryl</td>
</tr>
<tr>
<td>bs</td>
<td>Broad singlet</td>
</tr>
<tr>
<td>CAT</td>
<td>Chloramine-T</td>
</tr>
<tr>
<td>CBR</td>
<td>Central Benzodiazepine Receptor</td>
</tr>
<tr>
<td>CI</td>
<td>Chemical Ionisation</td>
</tr>
<tr>
<td>CNS</td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>DBI</td>
<td>Diazepam Binding Inhibitor</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>dd</td>
<td>Doublet of doublets</td>
</tr>
<tr>
<td>ddd</td>
<td>Doublet of doublets of doublets</td>
</tr>
<tr>
<td>DEPT</td>
<td>Distortionless Enhancement by Polarisation Transfer</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide</td>
</tr>
<tr>
<td>dt</td>
<td>Doublet of triplets</td>
</tr>
<tr>
<td>EAE</td>
<td>Experimental Autoimmune Encephalomyelitis</td>
</tr>
<tr>
<td>EI</td>
<td>Electron Impact</td>
</tr>
</tbody>
</table>
ES Electrospray
FDG Fluorodeoxyglucose
GABA Gamma-aminobutyric Acid
GIT Gastrointestinal Tract
h Hour
HPLC High Performance Liquid Chromatography
HRMS High Resolution Mass Spectrometry
Hz Hertz
IC\textsubscript{50} Inhibition Constant at 50%
ID/g Injected dose per gram
IMM Inner mitochondrial membrane
LE Lupus Erythmatosus
M Molar
m Multiplet
MBq Megabequerel
min Minute
mL Millilitre
mmol Milli mol
mp. Melting Point
MS Mass Spectrometry
m/z Mass/charge ratio
NBS \(N\)-Bromosuccinimide
OMM Outer mitochondrial membrane
PBR Peripheral Benzodiazepine Receptor
PE Petroleum Ether
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET</td>
<td>Positron Emission Tomography</td>
</tr>
<tr>
<td>PPA</td>
<td>Polyphosphoric Acid</td>
</tr>
<tr>
<td>q</td>
<td>Quartet</td>
</tr>
<tr>
<td>qC</td>
<td>Quaternary Carbon</td>
</tr>
<tr>
<td>RCY</td>
<td>Radiochemical Yield</td>
</tr>
<tr>
<td>RT</td>
<td>Room Temperature</td>
</tr>
<tr>
<td>s</td>
<td>Singlet</td>
</tr>
<tr>
<td>SAR</td>
<td>Structure-Activity Relationship</td>
</tr>
<tr>
<td>SPECT</td>
<td>Single Photon Emission Computed Tomography</td>
</tr>
<tr>
<td>StAR</td>
<td>Steroidogenic acute regulatory protein</td>
</tr>
<tr>
<td>t</td>
<td>Triplet</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetic Acid</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin Layer Chromatography</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris(Hydroxymethyl)aminomethane</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>VDAC</td>
<td>Voltage Dependent Anion Channel</td>
</tr>
</tbody>
</table>
Publications/Presentations

Publications

- **Homes, T.P.**, Keller, P.A., Katsifis, A., Mattner, F. (2006); Synthesis and in vitro binding of N,N-dialkyl-2-phenylindol-3-ylglyoxylamides for the peripheral benzodiazepine binding sites; Bioorganic and Medicinal Chemistry; 14; 3938-3946

- **Homes, T.P.** Mattner, F. Keller, P.A, Katsifis, A. (2007); Synthesis and in vivo evaluation of a novel $[^{123}\text{I}]$ indolglyoxylamide for the Peripheral Benzodiazepine Binding Sites; Journal of Labelled Compounds and Radiopharmaceuticals; 50; S307

Oral Presentations

- **Homes, T.P.**, Keller, P.A., Katsifis, A. Synthesis and peripheral and central benzodiazepine receptor binding affinity of N,N-dialkyl-2-phenylindol-3-ylglyoxylamides. RACI Young Chemist’s Symposium, 3rd July 2005, University of Sydney

Poster Presentations

- **Homes, T.P.,** Keller, P.A., Katsifis, A., Mattner, F. (2006); Synthesis and evaluation of *N,N*-dialkyl-2-phenylindol-3-ylglyoxylamides for the study of peripheral benzodiazepine binding sites; 4th France – Australia Symposium on Nuclear Medicine, Melbourne

- **Homes, T.P.,** Mattner, F., Keller, P.A., Katsifis, A. (2007); Synthesis and in vivo evaluation of a novel $[^{123}\text{I}]$ indolglyoxylamide for the peripheral benzodiazepine binding sites; 17th International Symposium on Radiopharmaceutical Science, 29th April-3rd May, Aachen, Germany
Abstract

Three classes of compounds were chosen for investigation to find a high affinity and selective iodinated peripheral benzodiazepine receptor (PBR) ligand; indol-3-ylglyoxylamides, pyrazolopyrimidines, and pyridopyrrolooxazepines and pyrrolobenzoxazepines. These compounds were chosen from a literature search for their high PBR affinity and selectivity, ease of synthesis, and the potential for radioiodination.

Fifteen new halogenated \(N,N\)-dialkyldiol-3-ylglyoxylamides were synthesised and tested for their PBR and central benzodiazepine receptor (CBR) affinity. The compounds IC\(_{50}\) values for the PBR ranged from 7.8 – 618 nM, and a structure activity relationship (SAR) was determined. Brominated compounds had higher binding affinities than their iodinated analogues, and indoles with a chloro substituent on position 5 had higher binding affinities than the non-chlorinated compounds. The optimum alkyl chain length was found to be two carbons. The highest affinity iodinated ligand, with a PBR IC\(_{50}\) of 8.2 nM, was radiolabelled with \(^{123}\)I in 55-60% radiochemical yield and evaluated \textit{in vivo} in Sprague-Dawley rats. Biodistribution studies revealed high uptake of the radiotracer in organs known to contain PBR, such as the kidneys, adrenals, heart, liver and lungs. Drug competition studies showed that the PBR drugs PK11195 and Ro5-4864, when injected into the rat 5 min prior to injection of the radiotracer, significantly decreased uptake of radiotracer into those organs. The CBR drug, flumazenil, did not decrease the uptake of the radiotracer. Metabolite studies showed that the radiotracer was > 95% intact in the heart, kidneys, adrenals, and brain after 3 h and was 65% intact in the plasma. This compound is the first radiolabelled...
PBR ligand of this class, and is an excellent candidate for future studies and may lead to a clinically useful imaging agent.

Three pyrazolopyrimidines were synthesised, with lengths of the alkyl chains being methyl, ethyl, or propyl groups. The highest affinity ligand, with the propyl groups, displayed an IC$_{50}$ of 7.9 nM, however, only the compound with ethyl groups displaying an IC$_{50}$ of 11.7 nM was radiolabelled with 123I in 95% radiochemical yield, and evaluated in vivo in rats. This compound showed high uptake into organs known to contain PBR, and also showed an interesting result in which pre-administration of Ro5-4864 did not cause any significant decrease of uptake of radiotracer in the kidney or heart, however PK11195 did cause of significant decrease in these organs. This compound provides the first radioiodinated PBR ligand of this class.

Two pyrrolopyridooxazepines and two pyrrolobenzoxazepines were synthesised and tested. One of the compounds was found to be inactive, while the others had moderate PBR IC$_{50}$ values of 24-39 nM. The moderate binding affinity for these compounds would unlikely lead to a successful imaging agent.
Table of Contents

Certification ii
Acknowledgements iii
List of Abbreviations iv
Publications/Presentations vii
Abstract ix
Table of Contents xi
List of Figures xvii
List of Schemes xxi
List of Tables xxiii

1 Introduction 1
1.1 Peripheral Benzodiazepine Receptors 1
1.2 Molecular Structure of the PBR 2
1.3 Cellular and Tissue Location of the PBR 4
1.4 Endogenous Ligands for the PBR 5
1.5 Synthetic PBR Ligands 7
1.6 Possible Functions of the PBR 9
1.6.1 Cellular Respiration 9
1.6.2 Steroid and Bile Acid Biosynthesis 9
1.6.3 Modulation of Apoptosis 12
1.6.4 Cellular Proliferation and Differentiation 12
1.6.5 Immune Responses 13
1.7 The PBR under Pathological Conditions 14
1.7.1 Neurodegenerative Disorders 14

x
1.7.2 Inflammation and Autoimmune Diseases 15
1.7.3 Cancer 16
1.8 Peripheral Benzodiazepine Receptor Ligands 17
 1.8.1 Benzodiazepines 17
 1.8.2 Isoquinoline Carboxamides 18
 1.8.3 Imidazopyridines and Imidazopyridazines 18
 1.8.4 Pyrazolopyrimidines 20
 1.8.5 Pyrrolobenzothiazepines, pyrrolobenzoxazepines and pyridopyrrolooxazepines 21
1.9 Radiopharmaceutical Chemistry 26
 1.9.1 Radionuclides 26
 1.9.2 Radiopharmaceuticals 27
 1.9.3 Radiation Detection 28
1.10 Radiolabelled PBR Ligands 31
 1.10.1 Iodine-123 Radiolabelled PBR Ligands 33
1.11 Project Aims 34
2 Synthesis of N,N-Dialkyl-2-phenylindol-3-yl-glyoxylamides 36
 2.1 N,N-Dialkyl-2-phenylindol-3-ylglyoxylamides for the PBR 36
 2.2 Target Compounds 37
 2.3 General Synthetic Strategy 39
 2.4 Synthesis of 5-Chloroindol-3-ylglyoxylamide Analogues 40
 2.4.1 Synthesis of Glyoxylyl Chloride Intermediates 40
 2.4.2 Synthesis of N,N-Dialkyl-[5-chloro-2-(4-halophenyl)-indol-3-yl]-glyoxylamides 41
 2.5 Synthesis of Indol-3-ylglyoxylamide Analogues 45
2.5.1 Synthesis of Glyoxylyl Chloride Intermediates 45
2.5.2 Amination of [2-(4-Halophenyl)indol-3-yl]glyoxylyl Chlorides 48
2.6 Synthesis of meta-Substituted Indol-3-ylglyoxylamide Analogues 49
2.7 Synthesis of 2-(4-Fluorophenyl)indol-3-ylglyoxylamide Analogue 52
2.8 In Vitro Binding of N,N-Dialkyl-2-phenylindol-3-ylglyoxylamides 54
2.9 Lipophilicity Estimations 57
2.10 Comparison with Similar New Indolylglyoxylamides 58
2.11 Conclusion 60

3 Synthesis of 2-Arylpyrazolo[1,5-a]-pyrimidin-3-yl Acetamides 61
3.1 2-Arylpyrazolo[1,5-a]pyrimidin-3-yl Acetamides 61
3.2 Rationale 64
3.3 General Synthetic Strategy 64
3.4 Synthesis of 4-Iodobenzoylacetonitrile Intermediate 66
3.5 Synthesis of Iodinated N,N-Dialkylbutanamides 67
3.6 Synthesis of 3-Aminopyrazoles 70
3.7 Synthesis of Pyrazolopyrimidines 71
3.8 In Vitro Binding of 2-Arylpyrazolo[1,5-a]pyrimidin-3-yl Acetamides 73
3.9 Conclusions and Future Directions 74

4 Synthesis of Pyridopyrrolooxazepines and Pyrrolobenzoxazepines 77
4.1 Pyrrolobenzothiazepines for the PBR 77
4.2 Pyridopyrrolo and Pyrrolobenzoxazepine Ligands for PBR 77
4.3 Rationale 79
4.4 General Synthetic Scheme 79
4.5 Synthesis of Ethyl (±)-α-Bromoarylacetates 81
4.6 Synthesis of Pyridopyrrolooxazepines 81
4.7 Synthesis of Pyrrolobenzoxazepines 87
4.8 Synthesis of 4-Halogenated Pyrrolobenzoxazepines 90
4.9 In Vitro Binding of Pyridopyrrolooxazepines and Pyrrolobenzoxazepines 92
4.10 Conclusions and Future Directions 94

5 Radioiodination and In Vivo Studies 95
5.1 Radioiodination Methods 95
5.2 Synthesis of 123I Compounds 97
5.2.1 Synthesis of 123I,N,N-Diethyl-(5-chloro-2-(4-iodophenyl)indol-3-yl)glyoxylamide 97
5.2.2 Synthesis of 123I,N,N-Diethyl-[2-(4-iodophenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl]acetamide 101
5.3 In Vivo Biodistribution Studies 104
5.3.1 In Vivo Biodistribution of 123I,N,N-Diethyl-(5-chloro-2-(4-iodophenyl)indol-3-yl)glyoxylamide [142] 104
5.3.2 In Vivo Biodistribution of 123I,N,N-Diethyl-[2-(4-iodophenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl]acetamide [144] 107
5.4 In Vivo Competition Studies 109
5.4.1 In Vivo Competition Study of 123I,N,N-Diethyl-(5-chloro-2-(4-iodophenyl)indol-3-yl)glyoxylamide [142] 109
5.4.2 Competition Study of 123I,N,N-Diethyl-[2-(4-iodophenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl]acetamide [144] 112
5.5 In Vivo Stability Studies 114
5.5.1 In Vivo Stability Study of 123I,N,N-Diethyl-(5-chloro-2-(4-iodophenyl)indol-3-yl)glyoxylamide [142] 114
5.5.2 In Vivo Stability Study of $[^{123}\text{I}]N,N$-Diethyl-[2-(4-iodophenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl]acetamide [144] 115

5.6 Conclusion and Future Directions 117

6 Conclusions and Future Directions 118

7 Experimental 121

7.1 General Experimental 121

7.2 Experimental Procedures for the Synthesis of Indole Compounds 123

7.2.1 Experimental Procedures for the Synthesis of 5-Chlorosubstituted Indol-3-ylglyoxylamides 123

7.2.2 Experimental Procedures for the Synthesis of Indol-3-ylglyoxylamides 133

7.2.3 Experimental Procedures for the Synthesis of $meta$-Substituted Phenylindol-3-ylglyoxylamides 141

7.2.4 Experimental Procedures for the Synthesis of Fluorinated Indol-3-ylglyoxylamides 146

7.3 Experimental Procedures for the Synthesis of 2-Arylpyrazolo[1,5-a]pyrimidin-3-yl Acetamides 148

7.4 Experimental Procedure for the Synthesis of Pyrrolobenzoxazepine and pyridopyrrolooxazepine compounds 159

7.4.1 Synthesis of Ethyl (\pm)-α-bromophenylacetates 159

7.4.2 Experimental Procedures for the Synthesis of Pyridopyrrolooxazepines 162

7.4.3 Experimental Procedures for the Synthesis of Pyrrolobenzoxazepines 170
7.5 Experimental Procedures for the Stannylation Reactions and Radioiodination Reactions 179

7.6 Pharmacology Methods 182

7.6.1 \textit{In Vitro} Binding Assays for Peripheral Benzodiazepine Receptors 182

7.6.2 \textit{In Vitro} Binding Assays for Central Benzodiazepine Receptors 183

7.6.3 \textit{In Vivo} Biodistribution Studies for $[^{123}\text{I}]$PBR200 [142] and $[^{123}\text{I}]$PBR215 [144] 185

7.6.4 \textit{In Vivo} Competition Studies for $[^{123}\text{I}]$PBR200 [142] and $[^{123}\text{I}]$PBR215 [144] 186

7.6.5 \textit{In Vivo} Stability Studies for $[^{123}\text{I}]$PBR200 [142] and $[^{123}\text{I}]$PBR215 [144] 187

7.7 Lipophilicity Estimations 188

8 References 189
List of Figures

Figure 1.1 A schematic diagram of the structure of the PBR complex in the mitochondria. 3

Figure 1.2 Possible endogenous PBR ligands. 6

Figure 1.3 Synthetic PBR ligands. 8

Figure 1.4 The mechanism of steroid and bile acid biosynthesis in the mitochondria of steroid producing cells and hepatic cells respectively. 10

Figure 1.5 Hypothetical model for cholesterol transport into mitochondria. 12

Figure 1.6 Structure of Ro5-4864 [6] and diazepam [11]. 17

Figure 1.7 Imidazo[1,2-α]pyridine-3-acetamides [12], alpidem [7] and zolpidem [13]. 19

Figure 1.8 General structure of imidazo[1,2-α]pyridine-3-acetamides [14]-[16]. 20

Figure 1.9 General structure of 2-arylpyrazolo[1,5-α]pyrimidin-3-yl acetamides [17]. 20

Figure 1.10 Potent PBR ligands: pyrrolobenzothiazepines [18], pyrrolobenzoxazepines [19], and pyridopyrrolooxazepines [20]. 21

Figure 1.11 Opening of the diazepine ring of Ro5-4864 leading to new PBR ligands based on aryloxyanilide derivatives [21]. 22

Figure 1.12 Structures of DAA1106 [22] and DAA1097 [23]. 23

Figure 1.13 The basic structure of 2-aryl-3-indoleacetamides (FGIN-1) [24], and FGIN-1-44 [25]. 24
Figure 1.14 General structure of 3-aryl-3-pyrrol-1-ylpropanamides, analogues of FGIN-1 [24].

Figure 1.15 Structure of N,N-dialkyl-2-phenylindol-3-ylglyoxyamides [27].

Figure 1.16 PET detector and brain images obtained with a SPECT camera.

Figure 1.17 DAA1106 radiolabelled with 18F.

Figure 1.18 $[^{11}C]PK11195$ [31] and PK11195 derivative, $[^{11}C]VC195$ [30].

Figure 1.19 Carbon-11 radiolabelled pyrazolopyrimidine, $[^{11}C]DPA-713$ [32].

Figure 1.20 123I radiolabelled PBR ligands.

Figure 1.21 Proposed compound classes for synthesis and investigation.

Figure 2.1 Structure of N,N-dialkyl-2-phenylindol-3-ylglyoxylamides.

Figure 2.2 Structures and PBR binding affinities for several N,N-dialkyl-2-phenylindol-3-ylglyoxylamides.

Figure 2.3 Possible variations for the target indol-3-ylglyoxylamides.

Figure 2.4 Iodinated target compound with the iodine on the alkyl chain.

Figure 2.5 1H and 13C NMR spectra similarities in the indole moiety for indol-3-ylglyoxylamides [48]-[54].

Figure 2.6 1H and 13C NMR spectra similarities in the indole moiety for indol-3-ylglyoxylamides [63]-[67].

Figure 2.7 A fitted sigmoid curve showing the PBR IC$_{50}$ of [65].

Figure 3.1 Basic structure of alpidem [7] and 2-arylpyrazolo[1,5-a]pyrimidin-3-yl acetamide derivatives [17].

Figure 3.2 Structure of 2-phenylpyrazolo[1,5-a]pyrimidinyl-3-yl acetamides.

Figure 3.3 Target iodinated 2-arylpyrazolo[1,5-a]pyrimidin-3-yl acetamides.

Figure 3.4 1H NMR spectra assignments of butanamide [95], typical of butanamides [96]-[98].
Figure 3.5 1H NMR assignment of [91], typical of target compounds [90]-[92].

Figure 3.6 PBR and CBR binding affinities of [90]-[92].

Figure 4.1 General structure of pyrrolobenzothiazepines for the PBR.

Figure 4.2 Selected pyridopyrrolooxazepines and pyrrolobenzoxazepines and their binding affinities (K_i) for PBR.

Figure 4.3 Compound showing possible positions for radiolabelling with 123I.

Figure 4.4 Proposed mechanism of radical reaction to form pyrido[3,2-b]pyrrolo[1,2-d][1,4]oxazine-6-one [122].

Figure 4.5 PBR and CBR IC$_{50}$ values for compounds [121], [123], [128], [130].

Figure 5.1 Radiiodination via nucleophilic addition to synthesise radioiodinated PK11195.

Figure 5.2 Direct radiiodination (radioiodo-deprotonation) of tyrosine.

Figure 5.3 Electrophilic radiiodination of a tributylstannyl group.

Figure 5.4 Structure of two oxidants, chloramine-T and iodogen.

Figure 5.5 Purification of $[^{123}I]$PBR200 using a semipreparative RP HPLC column.

Figure 5.6 Coinjection of iodo standard [50] with $[^{123}I]$PBR200 [142] onto HPLC.

Figure 5.7 HPLC purification of $[^{123}I]$PBR200 when using chloramine-T.

Figure 5.8 HPLC purification $[^{123}I]$PBR215 when used chloramine-T.

Figure 5.9 Purification of $[^{123}I]$PBR215 (at 12 min) using a semipreparative RP HPLC column.

Figure 5.10 Biodistribution of $[^{123}I]$PBR200 in male Sprague-Dawley rats.

Figure 5.11 Biodistribution of $[^{123}I]$PBR200 in Sprague-Dawley rats in blood, brain, olfactory bulbs and testes.
Figure 5.12 Biodistribution of 123I-PBR215 in male Sprague-Dawley rats. 108

Figure 5.13 Biodistribution of 123I-PBR215 in blood, brain, olfactory bulbs and testes. 109

Figure 5.14 Effects of various drugs on 123I-PBR200 uptake in rat organs. 110

Figure 5.15 Effects of various drugs on 123I-PBR200 uptake in rat blood, brain and olfactory bulbs. 111

Figure 5.16 Effects of various drugs on 123I-PBR215 uptake in rat organs. 113

Figure 5.17 Effects of various drugs on 123I-PBR215 uptake in rat organs. 113

Figure 5.18 In vivo stability study of 123I-PBR215 in Sprague-Dawley rats. 116
List of Schemes

Scheme 2.1 General synthesis of N,N-dialkyl-2-phenylindol-3-ylglyoxylamides. 39

Scheme 2.2 Synthesis of [5-chloro-2-(4-halophenyl)indol-3-ylglyoxylyl chlorides [46] and [47]. 41

Scheme 2.3 Amination of [5-chloro-2-(4-iodophenyl)indol-3-ylglyoxylyl chloride [46]. 42

Scheme 2.4 Amination of [5-chloro-2-(4-bromophenyl)indol-3-ylglyoxylyl chloride [47]. 44

Scheme 2.5 Synthesis of non-chlorinated glyoxylyl chlorides. 46

Scheme 2.6 Synthesis of 2-(4-bromophenyl)indole [60] via the Fischer indole synthesis. 47

Scheme 2.7 Amination of [2-(4-halophenyl)indol-3-ylglyoxylyl chlorides [61]-[62]. 48

Scheme 2.8 Synthesis of N,N-diethyl-[5-chloro-2-(3-iodophenyl)indol-3-yl]glyoxylyamide [73]. 50

Scheme 2.9 Proposed synthetic scheme for the synthesis of N-(E)-3-idoallyl-N-methyl-2-(4-fluorophenyl)indol-3-ylglyoxylamide [41]. 53

Scheme 3.1 General synthetic scheme for synthesis of 2-arylpyrazolo[1,5-a]pyrimidin-3-ylacetamides. 65

Scheme 3.2 Synthesis of key intermediate 4-iodobenzoylacetonitrile [89]. 67

Scheme 3.3 Synthesis of butanamides [95]-[98]. 68

Scheme 3.4 Mechanism for the synthesis of dialkylated product [99]. 70

Scheme 3.5 Reaction of [96] with hydrazine hydrate in ethanol. 71
Scheme 3.6 Synthesis of pyrazoles [100]-[102].

Scheme 3.7 Synthesis of 2-arylpyrazolo[1,5-α]pyrimidin-3-yl acetamides [90]-[92].

Scheme 4.1 General synthetic scheme for pyrrolobenzoxazepines and pyridopyrrolooxazepines.

Scheme 4.2 Synthesis of ethyl (±)-α-bromophenylacetates [112] and [113].

Scheme 4.3 General synthesis of 7-[(diethylcarbamoyl)oxy]-6-(4-iodophenyl)pyrido-[3,2-b]pyrrolo[1,2-α][1,4]oxazepine [121].

Scheme 4.4 An unexpected side-product from an O-alkylation reaction.

Scheme 4.5 Carbon alkylation of [120] when using DMF as solvent.

Scheme 4.6 Complete synthesis of target pyrrolobenzoxazepines [128] and [130].

Scheme 4.7 Carbon alkylation of [127] using DMF as solvent.

Scheme 4.8 Attempted synthesis of 7-[(diethylcarbamoyl)oxy]-4-iodo-6-phenyl-pyrrolo[2,1-α][1,5]benzoxazepine [138].

Scheme 5.1 Synthesis of [123I]N,N-diethyl-(5-chloro-2-(4-iodophenyl)indol-3-yl)glyoxylamide [142].

Scheme 5.2 Synthesis of [123I]N,N-diethyl-[2-(4-iodophenyl)-5,7-dimethyl]pyrazolo[1,5-α]pyrimidin-3-yl]acetamide [144].
List of Tables

Table 1.1 Difference between PBR and CBR. 2

Table 1.2 Radionuclides and their uses. 28

Table 2.1 Reaction and purification conditions and yields for compounds [48]-[51]. 42

Table 2.2 1H and 13C NMR alkyl chain peak assignments for compounds [48]-[51]. 43

Table 2.3 Reaction and purification conditions and yields for compounds [52]-[54]. 44

Table 2.4 Reaction and purification conditions and yields for compounds [63]-[67]. 48

Table 2.5 PBR and CBR binding affinities (IC50) of halogenated indolglyoxylamides. 55

Table 2.6 PBR K_i values of similar new indolylglyoxylamides. 59

Table 3.1 PBR binding affinities of selected 2-arylpyrazolo[1,5-a]pyrimidinyl-3-yl acetamides. 63