
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information
Sciences

2009

An Efficient Certificateless Encryption Scheme in the Standard Model An Efficient Certificateless Encryption Scheme in the Standard Model

Hua Guo
Beihang University

Xiyong Zhang
Zhengzhou Information Science and Technology Institute

Yi Mu
University of Wollongong, ymu@uow.edu.au

Zhoujun Li
Beihang University

Follow this and additional works at: https://ro.uow.edu.au/infopapers

 Part of the Physical Sciences and Mathematics Commons

Recommended Citation Recommended Citation
Guo, Hua; Zhang, Xiyong; Mu, Yi; and Li, Zhoujun: An Efficient Certificateless Encryption Scheme in the
Standard Model 2009.
https://ro.uow.edu.au/infopapers/3281

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F3281&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F3281&utm_medium=PDF&utm_campaign=PDFCoverPages

An Efficient Certificateless Encryption Scheme in the Standard Model An Efficient Certificateless Encryption Scheme in the Standard Model

Abstract Abstract
We propose an efficient certificateless public key encryption (CL-PKE) scheme which is provably secure
against chosen ciphertext attacks without random oracles. Our scheme is more computationally efficient
than the existing schemes and provides the shortest public key length compared to other existing CL-
PKEs with random oracles. We also propose a practical self-generated-certificate encryption (SGC-PKE)
scheme based on our CL-PKE scheme. One of merits of such cryptographic systems is that it can be
applied to countermeasure "Denial-of-Decryption (DoD) Attacks" that is inherent in CL-PKE.

Disciplines Disciplines
Physical Sciences and Mathematics

Publication Details Publication Details
Guo, H., Zhang, X., Mu, Y. & Li, Z. (2009). An Efficient Certificateless Encryption Scheme in the Standard
Model. In Y. Xiang, J. Lopez, H. Wang & W. Zhou (Eds.), 2009 Third International Conference on Network
and System Security (pp. 302-309). Gold Coast, Australia: IEEE.

This conference paper is available at Research Online: https://ro.uow.edu.au/infopapers/3281

https://ro.uow.edu.au/infopapers/3281

An Efficient Certificateless Encryption Scheme in the Standard Model

Hua Guo∗, Xiyong Zhang†, Yi Mu‡, Zhoujun Li∗
∗ School of Computer Science & Engineering, Beihang University, Beijing, PRC
† Zhengzhou Information Science and Technology Institute, Zhengzhou, PRC

‡ CCISR, School of Computer Science Software Engineering, University of Wollongong, NSW, Australia

Abstract—We propose an efficient Certificateless Public Key
Encryption (CL-PKE) scheme which is provably secure against
chosen ciphertext attacks without random oracles. Our scheme
is more computationally efficient than the existing schemes
and provides the shortest public key length compared to
other existing CL-PKEs with random oracles. We also propose
a practical Self-Generated-Certificate Encryption (SGC-PKE)
scheme based on our CL-PKE scheme. One of merits of such
cryptographic systems is that it can be applied to countermea-
sure “Denial-of-Decryption (DoD) Attacks” that is inherent in
CL-PKE.

Keywords-Certificateless Encryption; Self-Generated-
Certificate Encryption; Standard Model.

I. INTRODUCTION

In traditional public key cryptography (PKC), crypto-
graphic keys are generated randomly with no connection
to user identity. Therefore, it suffers from the so-called
man-in-the-middle attack. This problem can be solved by
introducing public key certificates where a public key is cer-
tified by a trusted certification authority (CA). A public key
certificate consists of user identity, public key, time stamp,
and other information, which are digitally signed by CA.
There are some concerns about the deployment of public key
certification, due to issues in certificate revocation, storage
and distribution.

Identity-based cryptography (IBC) was introduced by
Shamir.IBC solves the inherent problem of key authenticity
in a different way. In an identity-based system, users can
choose an arbitrary string, such as email address and IP
number, as their public key. The corresponding private key
is created by binding the identity string with a master secret
of a trusted authority called Key Generation Centre (KGC).
In this way, the certificate is provided implicitly and it is
no longer necessary to explicitly authenticate public keys.
The disadvantage of such system is that KGC knows every
user’s private key, which gives PKG the great power to
impersonate any user. This problem is referred to as the
key-escrow problem.

In order to eliminate the key-escrow problem of identity-
based cryptography, certificateless public key cryptography
(CL-PKC) was proposed by Al-Riyami and Paterson [1] in
2003. Unlike ID-based systems, a user’s private key consists
of two parts: partial private key corresponding to the ID
is generated by KGC, while the other part is generated by

user itself which is unknown to others. The user also selects
a public key associated to its private key (the second part).

CL-PKE is a new paradigm which binds identity-based
cryptography and traditional public key cryptography. It
preserves the attractive advantage of ID-based cryptography
without requiring digital certificates, but it is no longer “ID-
based” since public keys are no longer arbitrary strings. The
public key in CL-PKC does not need to be explicitly certified
by a trusted party as it has been generated with some “partial
secret key” from the KGC.

Unfortunately, due to lack of authentication, the public
key associated with the private key of a user in CL-PKC
may be replaced by anyone. Consequently, the receiver is not
able to decrypt ciphertext properly. Liu and Au [1] called this
attack Denial-of-Decryption (DoD) Attack. In order to resist
this attack, Liu and Au [1] further proposed a new paradigm
called Self-Generated-Certificate Public Key Cryptography
(SGC-PKC) based on CL-PKE system. But, being different
from CL-PKE cryptography, every user needs to generate a
certificate for his public key using his own secret key. This
signature binds the identity and the public key together. It
is implicitly included in the user’s public key and can be
verified by using the user’s identity and public key only
without the help of a third trusted party. By this means,
one can check if a victim’s public key is replaced through
a verification of the signature. Thus this cryptography is
immune to the DoD attack while inheriting all appealing
advantages of CL-PKE cryptography.

Since the first construction of CL-PKE [1] by Al-Riyami
and Paterson, many efficient CL-PKE schemes using bilin-
ear pairings have been proposed [1], [2], [6], [14], [19],
including several generic constructions [5], [11], [12] and
CL-PKE schemes without using a pairing [4], [15]. Several
good security analyses are also found in the literature [3],
[13], [20]. Most of these schemes were proven secure against
chosen ciphertext attacks in the random oracle model. We
observe the following three schemes that do not resort
to random oracles. Yum and Lee [20] provided a generic
construction provably secure in the standard model from
general cryptographic primitives such including PKE and
IBE. However, Hu et al.[13] showed that the Yum-Lee
construction has security weakness and proposed a fix in
the standard model. Liu et al. [17] first proposed a concrete
certificateless encryption scheme provably secure without

2009 Third International Conference on Network and System Security

978-0-7695-3838-9/09 $26.00 © 2009 IEEE

DOI 10.1109/NSS.2009.31

302

2009 Third International Conference on Network and System Security

978-0-7695-3838-9/09 $26.00 © 2009 IEEE

DOI 10.1109/NSS.2009.31

302

2009 Third International Conference on Network and System Security

978-0-7695-3838-9/09 $26.00 © 2009 IEEE

DOI 10.1109/NSS.2009.31

302

random oracles. Later Dent, Libert, and Paterson improved
this scheme and achieved stronger security. Park et al. [18]
proposed a CL-PKE scheme which is provably secure in
the selective-ID security model against chosen ciphertext
attacks without random oracles. Park et al.’s scheme makes
use of Gentry identity-based encryption scheme. However,
these three schemes suffer from the expensive computation
cost.

In this paper, we propose a new CL-encryption scheme
which is provably secure in the standard model. Compared
with other schemes without random oracles, our scheme is
superior in terms of computation cost and the size of public
key. Our scheme is inspired from Gentry’s ID-PKE scheme
[10]. We also give an SGC-PKE scheme based our CL-
PKE scheme to resist the DoD attack. Our scheme is more
efficient than that in [1] in terms of computation cost and
public key length.

The rest of this paper is organized as follows. In Section 2,
we describe the preliminaries including Weil pairing, review
the formulation of CL-PKE, and give the security model for
CL-PKE. In Section 3, we present our CL-PKE scheme and
provide a detailed security proof to show that our scheme is
semantically secure. Then, we remark the CL-PKE scheme
on complexity and security. In Section 4, we extend the
scheme to the SGC-PKE scheme. In section 5, we conclude
the paper.

II. PRELIMINARIES

In this section, we review some basic concepts, including
the pairing primitives, assumptions, and the formulation of
CL-PKE and its security model.

A. Bilinear Pairing and Security Assumptions

Here we briefly review some basic definitions of pairings.
Definition 1: Let G be an additive group of prime order

p and GT a multiplicative group of the same order. Let P
denote a generator of G. An admissible pairing is a bilinear
map ê : G×G→ GT which has the following properties:

1. Bilinear: For all Q, R ∈ G and a, b ∈ Z∗p , we have
ê(aQ, bR) = ê(Q,R)ab.

2. Non-degenerate: ê(P, P) 6= 1GT
.

3. Computable: ê is efficiently computable.
In the following, we describe two assumptions which are

related to the security of our schemes.

Truncated Decision q-ABDHE Assumption [10]: For
P,Q ∈ G, where G is a cyclic group of prime or-
der p, α ∈ Zp, given a vector of q + 3 elements
(Q,αq+2Q,P, αP, α2P, · · · , αqP) as input, an algorithm
B that outputs b ∈ {0, 1} has advantage ε in solving the
truncated decision q-ABDHE if∣∣Pr[B(Q,αq+2Q,P, αP, α2P, · · · , αqP, ê(αq+1P,Q)) = 0]

−Pr[B(Q,αq+2Q,P, αP, α2P, · · · , αqP,Z) = 0]
∣∣ ≥ ε

where ê is a bilinear pairing from G×G to GT , the proba-
bility is over the random choice of generators P,Q ∈ G, the
random choice of α ∈ Zp, the random choice of Z ∈ GT ,
and the random bits consumed by B.

The (ε, t, q)-ADBHE assumption holds in a group G if no
algorithm running in time at most t can solve the (ε, t, q)-
ADBHE problem in G with advantage at least ε.

Decision 1-BDHI Assumption: For P ∈ G, where G is a
cyclic group of prime order p, and the given element αP as
input, an algorithm B that outputs b ∈ {0, 1} has advantage
ε in solving the truncated decision 1-BDHI if

|Pr[B(P, αP, ê(P, P)1/α) = 0]− Pr[B(P, αP,Z) = 0]| ≥ ε

where ê is a bilinear pairing from G × G to GT , the
probability is over the random choice of generator P ∈ G,
the random choice of α ∈ Zp, the random choice of Z ∈ GT ,
and the random bits consumed by B.

We say that the (ε, t, 1)-BDHI assumption holds in a
group G if no algorithm running in time at most t can solve
that (ε, t, 1)-BDHI problem in G with advantage at least ε.

B. Formulation of CL-PKE and its Security Model

In this section, we review the definition and security
model for CL-PKE from [1].

Definition 2: A CL-PKE scheme is specified by seven
algorithms (Setup, Partial-Private-Key-Extract, Set-Secret-
Value, Set-Private-Key, Set-Public-Key, Encrypt, Decrypt)
such that:

- Setup is a probabilistic algorithm that takes security
parameter k as input and returns the system parameters
params and the master-key. The system parameters
include a description of the message space M and
ciphertext space C.

- Partial-Private-Key-Extract is a deterministic algo-
rithm which takes params, master-key and an identifier
for entity A, IDA as input. It returns a partial private
key ppkA.

- Set-Secret-Value is a probabilistic algorithm that takes
as input params and outputs a secret value skA.

- Set-Private-Key is a deterministic algorithm that takes
as input params, ppkA and skA and returns SA, a (full)
private key.

- Set-Public-Key is a deterministic algorithm that takes
params and SA as input and outputs a public key pkA.

- Encrypt is a probabilistic algorithm that takes params,
M ∈ M, skA and IDA as input and returns either a
ciphertext C ∈ C or the null symbol ⊥ indicating an
encryption failure.

- Decrypt is a deterministic algorithm that takes as input
params, C ∈ C and SA. It returns a message M ∈ M
or a message ⊥ indicating a decryption failure.

303303303

Algorithms Set-Private-Key and Set-Public-Key are nor-
mally run by an entity A for himself, after running Set-
Secret-Value. These three algorithms will be called User-
Key-Generation for simplicity in this paper. Usually, A
is the only entity in possession SA and pkA. Setup and
Partial-Private-Key-Extract are usually run by a trusted
third party, called Key Generation Center (KGC) [1].

In the following, we focus on the security model which
can be used to prove the semantic security of CL-PKE
schemes. Al-Riyami and Patersion presented the full IND-
CCA security model for CL-PKE in [1]. In the following,
we describe the actions that a general adversary A against a
CL-PKE scheme may carry out and how each action should
be handled by the challenger C.

- Extract partial private key of entity A: Challenger
C responds by running Partial-Private-Key-Extract to
generate the partial private key DA for entity A.

- Extract private key for entity A: If A’s public key
has not been replaced, C responds by running algorithm
Set-Private-Key to generate the private key SA for
entity A. But it is unreasonable to expect C to be able
to respond to such a query if A’s public key has already
been replaced by A.

- Request public key of entity A: C responds by running
algorithm Set-Public-Key to generate the public key
PA for entity A (first running Set- Secret-Value for A
if necessary).

- Replace public key of entity A: The adversary A can
repeatedly replace the public key PA for any entity A
with any value P ′A of its choice. The current value of
an entity’s public key is used by C in any computations
or responses to the adversary’s requests.

- Decryption query for ciphertext C and entity A:
On input a ciphertext and an identity, returns the
decrypted plaintext using the secret key corresponding
to the current value of the public key associated with
the identity of the user. If the user’s public key has
been replaced, it requires an additional input of the
corresponding secret key for the decryption. If it is not
given this secret key, it outputs ⊥.

The IND-CCA security model of [1] distinguishes two
types of adversary. A type I adversary AI is able to change
public keys of entities at will, but does not have access
to the master-key. A Type II adversary AII is equipped
with the master-key but is not allowed to replace public
keys of entities. This adversary models security against an
eavesdropping KGC.

Weak CL-PKE Type I IND-CCA Adversary: Such
an adversary AI does not have access to the master-key.
However, AI may request public keys and replace public
keys with values of its choice, extract partial private and
private keys and make decryption queries, all for identities
of its choice. As discussed above, we make several natural

restrictions on such a Type I adversary:
1. Adversary AI cannot extract the private key for IDch

at any point.
2. Adversary AI cannot request the private key for any

identifier if the corresponding public key has already
been replaced.

3. Adversary AI cannot both replace the public key for
the challenge identifier IDch before the challenge phase
and extract the partial private key for IDch in some
phase.

4. AI cannot make a decryption query on the ciphertext
C for the combination (IDA, pkA) such that pkA has
already been replaced.

5. In Phase 2, AI cannot make a decryption query
on the challenge ciphertext C for the combination
(IDch, pkch) that was used to encrypt Mb.

Strong CL-PKE Type II IND-CCA Adversary:([1],
[8]) Such an adversary AII has access to the master-key,
and can replace public keys of entities. AII can compute
partial private keys for himself, given the master-key. It can
also request public keys, make private key extraction queries
and decryption queries, both for identities of its choice. The
restrictions on this type of adversary are:

1. Adversary AII cannot extract the private key of any
identity for which it has replaced the public key.

2. Adversary AII cannot extract the private key for IDch

at any point.
3. Adversary AII cannot extract the partial private key at

any point.
4. In Phase 2, AII cannot make a decryption query on

the challenge ciphertext C for the combination (IDch,
pkch) that was used to encrypt Mb.

Definition 3: A CL-PKE scheme is said to be IND-CCA
secure if no polynomially bounded adversary A of Weak
Type I or Strong Type II has a non-negligible advantage in
the following game:

Setup: The challenger C takes a security parameter as
input and runs the Setup algorithm. It gives A the resulting
system parameters params. If A is of Type I, then C keeps
the master-key to himself, otherwise, he gives the master-key
to A.

Phase 1: A issues a sequence of requests described above.
These queries may be asked adaptively, but are subject to
the rules on adversary behavior defined above.

Challenge Phase: Once A decides that Phase 1 is over it
outputs the challenge identifier IDch and two equal length
plaintexts M0,M1 ∈ M. Again, the adversarial constraints
given above apply. C now picks a random bit b ∈ {0, 1} and
computes C∗, the encryption of Mb under the current public
key pkch for IDch, then delivery C∗ to A.

Phase 2: Now, A issues a second sequence of requests as
in Phase 1, which is again subject to the rules on adversary
behavior above.

304304304

Guess: Finally, A outputs a guess b′ ∈ {0, 1}.
The adversary wins the game if b = b′. We define A’s

advantage in this game to be Adv(A) := | Pr [b = b′]− 1
2 |.

Remark 1: If Type I Adversary can output a valid plain-
text without any additional input even in the case that
the corresponding public key has been replaced, we call
it Strong Type I Adversary and the CL-PKE scheme to
be IND-CCA secure of Strong Type I. Note that the only
difference between a Weak Type I and Strong Type I
Adversary is on the Decryption-Oracle.

III. OUR CL-PKE SCHEME IN THE STANDARD MODEL

In this section, we give a new CL-PKE scheme.

A. The Scheme

As all other identity-based systems, we assume the ex-
istence of a trusted Key Generation Center (KGC) that is
responsible for the creation and secure distribution of users’
partial private keys.

Setup: This algorithm takes a security parameter k as its
input and conducts the following steps:

1. Generate a prime p, and a bilinear pairing ê : G×G→
GT , where G and GT are all cyclic groups of order p.
Then, choose random generators P,Q1, Q2, Q3 ∈ G.

2. Choose a value α ∈ Z∗p and compute P1 = αP .
3. Choose one cryptographic hash functions H :
{0, 1}∗ → Z∗p.

The KGC publishes params = 〈p,G,GT , ê, P, P1, Q1,
Q2, Q3, H〉 as the system parameters, and keeps α as his
own secret master key. The parameters are distributed to the
users of the system through a secure authenticated channel.

Partial-Secret-Key (PSK) Extract: The KGC takes as
input params, master-key, and an arbitrary ID ∈ Z∗p,
generates random rID,i ∈ Z∗p, and outputs the PSK
{pskID,i = (rID,i, hID,i), i = {1, 2, 3}}, where hID,i =

1
α−ID (Qi − rID,iP).

Set-Secret-Value: User selects a secret r ∈ Z∗p as his
secret key skID = r.

Set-Private-Key: The user sets his full private key as
SID = {skID, pskID,1, pskID,2, pskID,3} = {r, (rID,i,
hID,i)(i = 1, 2, 3)}.

Set-Public-Key: The user sets his public key as pkID =
r(α− ID)P = r(P1 − ID · P).

Encrypt: To encrypt m ∈ GT using the user’s public key
pkID = r(α− ID)P , the sender generates random s ∈ Z∗p
and sends the ciphertext

C = (s·pkID, ê(P, P)s,m·ê(P,Q1)−s, ê(P,Q2)sê(P,Q3)sβ).

where β = H(u, v, w). Denote C as C = (u, v, w, y).
Note that ê(P, P), ê(P,Q1), ê(P,Q2), ê(P,Q3) can be

precomputed so that encryption algorithm requires no pair-
ing computations.

Decrypt: To decrypt ciphertext C = (u, v, w, y) for ID,
the recipient computes β = H(u, v, w) and checks whether

y = ê(u, hID,2 + βhID,3)1/skID · vrID,2+βrID,3 .

If it fails, the recipient outputs ⊥. Otherwise outputs m =
w · ê(u, hID,1)1/skID · vrID,1 .

Correctness: we can easily verify the correctness of the
checking equation:

ê(u, hID,2 + βhID,3)1/skID · vrID,2+rID,3β

= ê(skID · s(α− ID)P, 1
α−ID (Q2 + βQ3 − (rID,2+

+rID,3β)P))1/skID · ê(P, P)s(rID,2+rID,3β)

= ê(s(α− ID)P, 1
α−ID (Q2 + βQ3))

= ê(P,Q2)sê(P,Q3)sβ = y.

And the decryption correctness follows by:

w · ê(u, hID,1)1/skID · vrID,1

= m · ê(P,Q1)−s · (ê(skID · s(α− ID)P,
1

α−ID (Q1 − rID,1P)))1/skID · ê(P, P)srID,1

= m · ê(P,Q1)−s · ê(P,Q1)s = m.

B. Efficiency Analysis and Comparison

We consider four major operations: Pairing, Scalar, Ex-
ponentiation and Hashing, of which pairing is the most
expensive one. For simplicity, we denote these operations
respectively by P (Pairing), S (scalar multiplication in G),
E (exponentiation in GT), and H (Hashing). Some CL-PKE
schemes require message authentication or signature opera-
tions for the IND-CCA security. We denote by (Mac, V erf)
the message authentication algorithm and by (Sig, V er) the
signature algorithm.

We compare our scheme with some other schemes in-
volving pairing computations, in terms of the security model,
computation cost and public key length, without considering
the pre-computation. The comparison is outlined in Table I
where the second column and the third column respectively
denote the Type I security model and Type II security model
used in the corresponding CL-PKE scheme. We denote by
Len the public key length in the corresponding schemes.

According to Table I, every scheme has some weakness,
and it is unfair to claim that one scheme is better than
another. However, we can analyze them as follows:

Compared to the first three schemes, our scheme is proven
security in the standard model. Moveover, our scheme has
less computational cost than the first two. A special hashing
could be around 20 times more costly than a pairing [7], so
our scheme is more efficient than Shi-Li’s.

Compared to the next three schemes provably secure
without random oracles, our scheme is the most efficient one
due to its computation cost of encryption and decryption,
which highlights the advantage of our scheme. Furthermore,
They need to publish two elements as the user’s public
key, while our scheme needs only one. This would save the
bandwidth in some situations.

305305305

Schemes Type I Type II Model Encrypt Decrypt Len
A-P [1] Weak Weak ROM 3P+1S+1E+4H 1P+1S+3H 2
C-C [6] Weak Weak ROM 1P+2S+1E+4H 1P+2S+3H 1
S-L [19] Strong Weak ROM 3S+1E+5H 1P+2S+4H 1

P-C-H-L [18] Strong Strong Standard 5S+2E+1Sig 6P+5S+2E+1Ver 2
L-A-S [17] Weak Strong Standard 4P+4S+1E+1Mac 3P+1S+1E+1Verf 2

Dent [9] Strong Strong Standard 3P+3S+1E+1H 4P+1H 2
Proposed Weak Strong Standard 1S+4E+1H 2P+1S+4E+1H 1

Table I
THE COMPARISON OF THE PROPOSED SCHEME AND OTHER CL-PKE SCHEMES. THE “STRONG” SECURITY MODEL THAT DOES NOT HAVE THE

“EXTRACT PRIVATE KEY” QUERY IS A LITTLE DIFFERENT FROM THE DENT’S SECURITY MODEL ([8], [9]).

IV. SECURITY ANALYSIS

In this section, we study the security of the proposed CL-
PKE scheme. The following theorem shows that the CL-
PKE scheme is a semantic IND-CCA secure certificateless
encryption scheme in the standard model. Due to the limited
space, here we only give a sketch proof.

Theorem 1: Let q = qID + 2. Assume the truncated
decision (t, ε, q)−ABDHE assumption holds for (G,GT , ê).
Then our CL-PKE scheme is (t′, ε′, qID, qC) IND-CCA
secure against weak Type I adversary with advantage at most
ε′, running in time at most t′ and making at most qID Partial
Private Key Extraction queries and at most qC Decryption
queries, where t′ = t−O(texp · q2) and ε′ ≥ ε, texp is the
time required to exponentiate in G.

Proof: Assume there exists a type I adversary A that
(t′, ε′, qID, qC)-breaks the IND-CCA secure for our scheme.
We construct a PPT algorithm B that makes use of A to
solve the truncated decision q-ABDHE problem with pa-
rameters (Q,αq+2Q,P, αP, · · · , αqP,Z), where Z is either
ê(αq+1P,Q) or a random element of GT . The algorithm B
proceeds as follows.

Setup: B generates three random polynomials fi(x) ∈
Zp[x] of degree q for i ∈ {1, 2, 3}. It sets Qi = fi(α)P .
It sends the public key (P,Q,Q1, Q2, Q3) to A. Since
P, α, fi(x) are chosen uniformly at random, Q1, Q2, Q3 are
uniformly random and the public key has a distribution
identical to that in actual construction. Note that the master-
key is α, which is unknown to B.

Phase 1: In this phase A makes the following oracle
queries.

Partial Private Key Extraction: Suppose the query is
on ID. There are two cases: If ID = α, B uses α to
solve the truncated decision q-ABDHE; Else let FID,i(x)
be the (q-1)-degree polynomial (fi(x) − fi(ID))/(x −
ID)(i = 1, 2, 3). B answers the query with (rID,i, hID,i) =
(fi(ID), FID,i(α)P). The validity follows from the fact that

FID,i(α)P =
fi(α)− fi(ID)

α− ID
P =

Qi − fi(ID)
α− ID

P.

Private Key Extraction: B returns the skID = r for
the given ID if the corresponding public key has not been
replaced and ID 6= ID∗. Otherwise he outputs ⊥.

Request for Public Key: B keeps the database of user
key. Upon receiving a query for public key of ID, B looks
up its database to find out the corresponding entry. If it does
not exist, B runs User-Key-Generation to generate a secret
and public key pair. It stores the key pair in its database and
returns the public key as the query output.

User-Key-Generation: To generate a secret and public
key pair. He stores the key pair in its database and returns
the public key as the query output.

Replace Public Key: Suppose the query is to replace the
public key for ID with value PKID. B responds as follows:

• If no tuple corresponding to ID exists on the database,
B follows User-Key-Generation algorithm to create a
new entry for this identity.

• Otherwise, B replaces the corresponding public key
with PKID.

Decryption: According to the security model, the sim-
ulator only decrypts the ciphertext corresponding to an
identity with unreplaced public key. So we assume that
B knows the discrete logarithm of pk = sk · P = rP .
Under this assumption, B decrypts and answers the oracle
by performing the usual Decrypt algorithm with the right
partial private key and the private key. If the corresponding
public key has been replaced, he outputs ⊥.

Challenge Phase: A then outputs two messages M0,M1

and an identity ID∗. If α = ID∗, B uses α to solve
the truncated decision q-ABDHE immediately. Otherwise,
B generates bit b ∈ {0, 1}, and uses Partial Private Key
Extraction to compute a partial private key {rID∗ , hID∗}
for ID∗. According to the security model, assume the secret
key skID∗ = r is known to B.

Let f(x) = xq+2 and F (x1, x2) = (f(x1)−f(x2))/(x1−
x2) = xq+1

1 + F ′(x1, x2), where F ′(x, y) is a polynomial
of degree q + 1. B will compute the ciphertext as follows:
u = r · (f(α) − f(ID∗))Q, v = Z · ê(Q,F ′(α, ID∗)),
w = Mb/(ê(u, hID∗)vrID∗), y = ê(u, hID∗,2 +β ·hID∗,3) ·
vrID∗,2+β·rID∗,3 , where beta = H(u, v, w).

Let s = logPQ · F (α, ID∗). If Z = ê(αq+1P,Q), then
u = r · s(α− ID∗)P = s(α− ID∗) · rP, v = ê(αq+1P,Q) ·
ê(Q,F ′(α, ID∗)P) = ê(Q,F (α, ID∗)P) = ê(P, P)s, and
w = Mb/ê(u, hID∗)vrID∗ = Mb/ê(P,Q1)s = Mb ·

306306306

ê(P,Q1)−s, y = ê(u, hID∗,2+β·hID∗,3)·vrID∗,2+β·rID∗,3 =
ê(P,Q2 + βQ3)s. Here, s is random, so (u, v, w, y) is a
valid and appropriately-distributed challenge ciphertext for
A.([10])

Phase 2: B repeats the same method it used in Phase 1.
Guess: Finally, the adversary outputs guess b′ ∈ {0, 1}.

If b = b′, B outputs 0 (indicating Z = ê(αq+1P,Q));
otherwise it outputs 1.

As the security proof in [10], the values rID,i issued by B
are appropriately distributed in A’s view. For the probability
analysis of B’s advantage ε′ in solving the truncated decision
q −ABDHE problem, we should consider in two cases.

When Z = ê(αq+1P,Q), by using Z, B replies with a
valid ciphertext with a distribution identical to that in the
actual construction. So the simulator has |Pr[b = b′] −
1/2| ≥ ε. When Z is random in GT , then the simulator
has Pr[b = b′] = 1/2.

Thus we have

Pr[B(Q,αq+2Q,P, αP, α2P, · · · , αqP, ê(αq+2P,Q)) = 0]
−Pr[B(Q,αq+2Q,P, αP, α2P, · · · , αqP,Z) = 0]| = ε′ ≥ ε.

The time-complexity of the algorithm is identical to that
of the proof in [10]. In the simulation, B’s operation is
dominated by computing FID,i(α)P in response to A’s Par-
tial Private Key Extraction query on ID, where FID,i(x)
is a polynomial of degree q − 1. Each such computation
requires O(q) exponentiations in G. So the time-complexity
is t′ = t−O(texp · q2).

Theorem 2: Assume that the decision (t, 1, ε)-BDHI as-
sumption holds in G. Then our CL-PKE scheme is (t, q, ε′)-
IND-CCA secure against the Type II adversary, with advan-
tage at most ε′, running in time at most t and making at
most q Request for Public Key queries, where ε′ ≥ ε/q.

Proof: Assume there exists a type II adversary A
against our scheme. We construct a PPT algorithm B that
makes use of A to solve the decision 1-BDHI problem.
B takes as input a decision 1-BDHI problem instance
(P, αP,Z) and is to decide if Z = ê(P, P)1/α. In order to
use A to solve the problem, B needs to simulate a challenger
and the oracles for A. B does it in the following way.

Setup: B generates two random elements x1, x2, x3 ∈
Z∗p. Randomly chooses γ as the master key and chooses an
identity ID∗ and relates it to the public key (γ-ID∗)αP .
It sets Q = γP,Q1 = x1P,Q2 = x2P,Q3 = x3P and
sends the public key (P,Q,Q1, Q2, Q3) and the master key
γ to A. Since P and γ are chosen uniformly at random,
Q1,Q2 and Q3 are uniformly random and the public key
has a distribution identical to that in actual construction.

Phase 1: In this phase A can make the following oracle
queries.

Request for Public Key: B keeps the database of user
key. Upon receiving a query for public key of ID, B looks
up its database to find out the corresponding entry. If it does

not exists, B runs User-Key-Generation to generate a secret
and public key pair. It stores the key pair in its database and
returns the public key as the query output.

Replace Public Key: Suppose the query is to replace the
public key for ID with value PKID. B responds as follows:
• If no tuple corresponding to ID exists on the database,
B follows User-Key-Generation algorithm to create a
new entry for this identity.

• Otherwise, B replaces the corresponding public key
with PKID.

Extract private key for entity A: If the corresponding
public key has not been replaced, B returns the skID = r
for the given ID; Otherwise he outputs ⊥.

User-Key-Generation: To generate a secret and public
key pair, B stores the key pair in its database and returns
the public key as the query output.

Decryption: B can decrypt the ciphertext (u, v, w, y) as
follows:

Let β = H(u, v, w). By using the trap values x2, x3,
the simulator checks whether y = vx2+βx3(= ê(sP,Q2 +
βQ3) = ê(P,Q2)sê(P,Q3)sβ). If it fails, outputs ⊥. Oth-
erwise, we have vx1 = ê(P,Q1)s. So the simulator outputs
m = w · vx1 .

Challenge Phase: A outputs two messages M0,M1 and
an identity ID0. If ID∗ 6= ID0, B aborts. Otherwise, B
generates a bit e ∈ {0, 1} and a random element t ∈ Z∗p,
and constructs the ciphertext as follows.

u = (γ− ID0) · tP, v = Zt, w = Me/Z
x1t, y = Z(x2+x3β)t

where β = H(u, v, w).
In the above, if we let s = t/α and Z = ê(P, P)1/α,

then u = s · pkID∗ , v = ê(P, P)s, w = Me/ê(P,Q1)s, y =
ê(P,Q2)s · ê(P,Q3)βs.

The above randomness of s comes from the randomness
of t, so (u, v, w, y) is a valid and appropriately-distributed
challenge ciphertext for A ([10]).

Phase 2: B repeats the same method it used in Phase 1.
Guess: Finally, the adversary outputs guess e′ ∈ {0, 1}. If

e = e′, B outputs 0 (indicating Z = ê(P, P)1/α); otherwise
it outputs 1.

The key pairs and challenge cipher-text issued by B have
a distribution identical to that in the actual construction. If
ID0 6= ID∗, the simulation aborts the game. This happens
with probability 1/q since A make q different Request for
Public Key queries. If the algorithm does not abort during
the simulation then A’s view is identical to its view in the
real attack. To complete the proof it remains to calculate the
probability that B does not abort during the simulation.

For the probability analysis of B’s advantage ε′ in solving
the decision 1-BDHI problem, we should consider in two
cases.

When Z = ê(P, P)1/α, by using Z, B replies with a valid
ciphertext with a distribution identical to that in the actual
construction. So the simulator has |Pr[e = e′]− 1/2| ≥ ε.

307307307

When Z is random in GT , then the simulator has Pr[e =
e′] = 1/2.

Thus we have

Pr[B(P, αP, ê(P, P)1/α) = 0]− Pr[B(P, αP,Z) = 0]
= ε′ ≥ ε/2q.

The time-complexity of the algorithm B is identical to
that of A.

V. AN EFFICIENT SGC-PKE SCHEME

In this section, we give an efficient Self-Generated-
Certificate (SGC) encryption scheme based on the above
Certificateless encryption scheme. Most algorithms are the
same as the algorithms of certificateless encryption scheme,
except for SetPublicKey and Encrypt. In order to distin-
guish the algorithm of CL-encryption, we will add the prefix
CL. to the corresponding algorithms. For example, we use
CL.Setup to denote the encryption algorithm of the CL-
encryption scheme. The proposed SGC-encryption scheme
is described as follow:

A. The Scheme

As our CL-PKE system, we assume the existence of a
trusted Key Generation Center (KGC) that is responsible for
the creation and secure distribution of users’ partial secret
keys.

Setup: Same as CL.Setup. This algorithm takes a se-
curity parameter k as its input, and outputs params =
〈q,G,GT , ê, P, P1, Q1, Q2, Q3, H〉 as the system parame-
ters, and keeps α as his own secret master key.

Partial-Secret-Key (PSK) Extract: As CL.Partial-
Secret-Key (PSK) Extract.

Set-Secret-Value: As CL.Set-Secret-Value.
Set-Private-Key: As CL.Set-Private-Key.
Set-Public-Key: User selects a secret r ∈ Z∗p as his secret

key skID and computes his public key as pkID = r(α −
ID)P .

Next, it does the following to sign the pkID using
the user’s private key skID and pskID,2. Let σ1 =

1
skID

hID,2, σ2 = −rID,2P, σ3 = skIDP. Then, the
signature is σ = (σ1, σ2, σ3).

Encrypt: To encrypt m ∈ GT using the user’s public
key pkID = r(α − ID)P , the sender first checks the
two equations ê(pkID, P) = ê(σ3, P1 − ID · P) and
ê(pkID, σ1) = ê(P,Q2) · ê(P, σ2). If not all of them are
satisfied, then the sender outputs ⊥, indicating that the public
key pkID has been replaced.

Next, the sender generates random s ∈ Z∗p and
sends the ciphertext C = (s · pkID, ê(P, P)s,m ·
ê(P,Q1)−s, ê(P,Q2)sê(P,Q3)sβ). where β = H(u, v, w).
Denote C as C = (u, v, w, y).

Note that ê(P, P), ê(P,Q1), ê(P,Q2), ê(P,Q3) can be
precomputed. So the encryption algorithm requires 4 pairing
computations in all (including the checking operations).

Decrypt: As CL.Decrypt.
Correctness: If the user’s public key pkID = r(α−ID)P

has not been replaced, the checking equation in encryption
is correct:

ê(pkID, P) = ê(r(α− ID)P, P)
= ê(rP, (α− ID)P)
= ê(σ3, P1 − ID · P),

ê(pkID, σ1) = ê(r(α− ID)P, 1
skID

hID,2)
= ê(P,Q2 − rID,2P)
= ê(P,Q2) · ê(P, σ2).

The other correctness in the decryption are the same as
our CL-encryption scheme.

B. Discussion

The first SGC-PKE scheme was proposed by Liu and
Au [17]. It is generic based on a CL-encryption scheme
and a CL-signature scheme that use the same set of public
parameters and user key generation algorithm. This construc-
tion mechanism substantially decreases the computational
efficiency.

Recently, Lai and Kou [15] proposed a new SGC-PKE
scheme without using pairing. However their SGC-PKE
scheme construction is different from their CL-PKE’s in
the Partial-Key-Extract algorithm and Set-Private-Key
algorithm, which may be problematic in the implementation.

Our scheme is the third SGC-PKE scheme to date. The
scheme is more efficient than that in [17]. Moveover the
public key length of the scheme is shorter than theirs. It
follows our CL-PKE scheme by adding an extra signature
with the other operations of the CL-PKE scheme unchanged,
which has some advantages over the scheme in [15] in the
implementation.

VI. CONCLUSION

In this paper, we presented an efficient CL-PKE scheme
which is constructed from the identity-based encryption
scheme proposed by Gentry [10]. Based on the security
of the q-ABDHE assumption and 1-BDHI assumption we
showed that the presented scheme has the weak type I and
strong Type II security in the standard model. The new
scheme is much more efficient than the existing CL-PKE
schemes on computation and published public key infor-
mation. Furthermore, based on the new CL-PKE scheme
we also gave an SGC-encryption scheme by introducing an
extra signature with other parts unchanged, which is more
practical than the existing schemes. Nevertheless, we can
only achieve the weak Type I security for the CL-PKE
scheme. It is still an open problem to design a practical CL-
PKC and SGC-PKC scheme with strong Type I and strong
Type II security in the standard model.

308308308

ACKNOWLEDGMENT

This work was supported by National Natural Science
Foundation of China (Grant No. 60473057 and 60803154)
and Doctoral Innovation Foundation of Beihang University
(Grant No. 211619). Part of this work was done while the
first author was with University of Wollongong, Australia.

REFERENCES

[1] S.S. Al-Riyami, K.G. Paterson, Certificateless Public Key
Cryptography, In: Advances in Cryptology-ASIACRYPT
2003, Springer, Heidelberg: LNCS 2894, 452-473, 2003.

[2] S.S. Al-Riyami, K.G. Paterson, CBE from CL-PKE: A
Generic Construction and Efficient Schemes, In: Public Key
Cryptography-PKC 2005, Springer, Heidelberg: LNCS 3386,
398-415, 2005.

[3] M. H. Au, J. Chen, J. K. Liu, Y. Mu, D. S. Wong and G.
Yang, Malicious KGC Attack in Certificateless Cryptography,
In Proc. ACM Symposium on Information, Computer and
Communications Security, ACM Press, 2007.

[4] J. Baek, R. Safavi-Naini, W. Susilo, Certificateless Public
Key Encryption Without Pairing, In: 8th Information Security
Conference (ISC 2005), Springer, Heidelberg: LNCS 3650,
134-148, 2005.

[5] K. Bentahar, P. Farshim, J. Malone-Lee, N.P. Smart, Generic
Constructions of Identity-Based and Certificateless KEMs,
Journal of Cryptology, 21(2): 178-199, 2008.

[6] Z. Cheng, L. Chen, L. Ling, R. Comley, General and Efficient
Certificateless Public Key Encryption Constructions, In: Pair-
ing 2007, Springer, Heidelberg: LNCS 4575, 83-107, 2007.

[7] L. Chen, Z. Cheng, N.P. Smart, Identity-based Key Agreement
Protocols From Pairings, International Journal Information
Security, 6: 213-241, 2007.

[8] A.W. Dent, A Survey of Certificateless Encryption Schemes and
Security Models, International Journal of Information Security,
7(5): 349–377, 2008.

[9] A. W. Dent, B. Libert, and K. G. Paterson, Certificateless
Encryption Schemes Strongly Secure in the Standard Model,
In: Public Key Cryptography-PKC 2008, Springer, Heidelberg:
LNCS 4939, 344–359, 2008.

[10] C. Gentry, Practical Identity-Based Encryption Without Ran-
dom Oracles, In Porc. of EUROCRYPT 2006, Springer, Hei-
delberg: LNCS 4004, 445-464, 2006.

[11] D. Galindo, P. Morillo, C. Rafols, Breaking Yum and Lee
Generic Constructions of Certificateless and Certificate-Based
Encryption Schemes, In: EuroPKI 2006, Springer, Heidelberg:
LNCS 4043, 81-91, 2006.

[12] Q. Huang, D.S. Wong, Generic Certificateless Encryption
in the Standard Model, In: 2nd International Workshop on
Security (IWSEC 2007), Springer, Heidelberg: LNCS 4752,
278-291, 2007.

[13] B. Hu, D.S. Wong, Z. Zhang, X. Deng, Key Replacement
Attack Against a Generic Construction of Certificateless Sig-
nature, In: The 11th Australasian Conference on Information
Security and Privacy (ACISP 2006), Springer, Heidelberg:
LNCS 4058, 235-246, 2006.

[14] X. Huang, W. Susilo, Y. Mu, and F. Zhang, Certificateless
Designated Verifier Signature Schemes, In: The Second Inter-
national Workshop on Security in Networks and Distributed
Systems (SNDS 2006), IEEE Computer Society, 15-19, 2006.

[15] J. Lai and W. Kou, Self-Generated-Certificate Public Key
Encryption Without Pairing, In: Public Key Cryptography-
PKC’07, Springer, Heidelberg: LNCS 4450, 476-489, 2007.

[16] B. Libert, J.J. Quisquater, On Constructing Certificateless
Cryptosystems From Identity Based Encryption, In: Public
Key Cryptography-PKC’06, Springer, Heidelberg: LNCS 3958,
474-490, 2006.

[17] J.K. Liu, M.H. Au, W. Susilo, Self-Generated-Certificate Pub-
lic Key Cryptography and Certificateless Signature/Encryption
Scheme in the Standard Model, In: Proc. ACM Symposium on
Information, Computer and Communications Security, ACM
Press, New York, 2007.

[18] J. H. Park, K. Y. Choi, J. Y. Hwang and D. H. Lee, Cer-
tificateless Public Key Encryption in the Selective-ID Security
Model (Without Random Oracles), In: Pairing 2007, Springer,
Heidelberg: LNCS 4575, 60-82, 2007.

[19] Y. Shi, J. Li, Provable Efficient Certificateless Public Key
Encryption, Cryptology ePrint Archive, Report 2005/287,
http://eprint.iacr.org/2005/287, 2005.

[20] D. Yum, P. Lee, Generic Construction of Certificateless
Encryption, In: International Conference of Computational
Science and Its Applications-ICCSA’04, Springer, Heidelberg:
LNCS 3043, 802-811, 2004.

309309309

	An Efficient Certificateless Encryption Scheme in the Standard Model
	Recommended Citation

	An Efficient Certificateless Encryption Scheme in the Standard Model
	Abstract
	Disciplines
	Publication Details

	An Efficient Certificateless Encryption Scheme in the Standard Model

