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Abstract

Remote sensing platforms can collect measurements on a global scale within a few
days, which provides an unprecedented opportunity to characterize and understand
the spatio-temporal variability of environmental variables. Because of the additional
challenges of making precise and accurate measurements from space, it is essential to
validate satellite remote sensing datasets with highly precise and accurate ground-
based measurements. The focus of this article is on two sets of measurements: At-
mospheric column-averaged carbon dioxide (CO2) collected by the Orbiting Carbon
Observatory-2 (OCO-2) mission in its target mode of operation; and ground-based
data used for validation from the Total Carbon Column Observing Network (TC-
CON). The current statistical modeling of the relationship between the OCO-2 data
and the TCCON data assumes a linear regression and different measurement errors
that reside in both the TCCON data and the OCO-2 data. To obtain consistent
estimates of the regression coefficients, it is critical to determine the error variance
of each datum in the regression. In this article, a rigorous statistical procedure is
presented for obtaining the error variances through modeling the spatial and/or
temporal dependence structure in the OCO-2 and TCCON datasets. Numerical re-
sults for analyzing a pair of datasets at the Lamont TCCON station and OCO-2
orbit number 3590 illustrate our procedure.

Key words: atmospheric carbon dioxide, errors in variables, OCO-2, spatial
statistics, TCCON, time series
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1 Introduction

Satellite remote sensing measurements of Earth’s surface and atmosphere pro-
vide global coverage within a matter of days. This helps scientists understand
the spatio-temporal distribution of environmental processes. Examples of re-
mote sensing datasets of this type include atmospheric trace gases (e.g., car-
bon dioxide, methane, ozone), sea surface temperature, sea-ice extent, solar-
induced fluorescence from plants, aerosols, and so forth. These remote sensing
measurements from space require validation from well characterized ground-
based measurements to ensure their accuracy and precision throughout the
satellite’s mission. This is often achieved through fitting a regression rela-
tionship between coincident ground-based and satellite-based measurements,
where uncertainties are present in both the dependent (Y ) and independent
(X) variables. Consequently, correctly determining the error variance of each
of the X- and Y -values in the regression is of critical importance.

In this article, we determine the error variances of these values by exploiting
spatial dependence for the satellite-based measurements and temporal depen-
dence for the ground-based measurements. Finding these variances is key to
estimating accurately the regression parameters. The problem is generally rel-
evant to many topics in chemistry, physics, and the biogeosciences; in this
article, we shall focus on the Orbiting Carbon Observatory-2 (OCO-2) valida-
tion program [1].

The OCO-2 mission aims to provide the atmospheric measurements required
to understand better the carbon cycle, which is the cycling of carbon (most
often in the form of CO2) between the oceans, land, terrestrial biosphere,
and atmosphere. The main sinks of CO2 are the oceans, which dissolve CO2

into seawater to form carbonic acid, and the terrestrial biosphere, in which
plants, through photosynthesis, convert CO2 into the sugars necessary to grow
[2]. There are many sources of atmospheric CO2, primarily fossil-fuel burning
(e.g., coal, petroleum, natural gas), which oxidizes carbon-containing fuels
to produce CO2; and land use, which both alters the surface albedo and on
average reduces the land CO2 sink [2]. Other industrial processes are signifi-
cant sources of CO2, such as cement production, where limestone (CaCO3) is
chemically converted into calcium oxide (CaO), producing CO2 as a byproduct
[2,3].

Due to these human activities, CO2 concentrations in Earth’s atmosphere have
been increasing: The atmospheric CO2 concentration of Earth has increased
from about 280 parts per million (ppm) since the beginning of the industrial
revolution in the 1700s to about 400 ppm today. The percentage of each year’s
CO2 emissions that remain in the atmosphere has also been increasing in the
past 50 years. According to [4], there is evidence that from 1959 to 2008,
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the fraction of CO2 emissions that remain in atmosphere each year is likely to
have increased from 40% to 45%. The increasing levels of atmospheric CO2 and
other greenhouse gases are the primary cause of increases in Earth’s surface
temperature.

The goals of the OCO-2 mission are to measure atmospheric carbon dioxide
(CO2) with high enough precision and accuracy to distinguish between the
sources and sinks of CO2 on regional scales, and to quantify the seasonal,
latitudinal, and interannual variability of CO2 [5]. To achieve this goal, mea-
surement precision and accuracy must be better than one part per million of
CO2 (i.e., 1 ppm or 0.25%) [6]. This is a difficult task and, thus, the method
to ensure that the OCO-2 data are sufficiently accurate is critical. The stan-
dard CO2 gas scale is set by the World Meteorological Organization (WMO),
and to tie the OCO-2 data to that standard scale requires a so-called transfer
standard between the WMO-calibrated instruments and the remote sensing
OCO-2 measurements. The Total Carbon Column Observing Network (TC-
CON, [7]) acts as this transfer standard, since TCCON is tied to the WMO
scale through comparisons with WMO-traceable aircraft and balloon-borne
measurements [8].

To compare OCO-2 data with TCCON data, a special observation mode was
designed for the OCO-2 satellite, called “target mode.” In this mode, the
OCO-2 spacecraft turns to “stare” at a ground location (typically a TCCON
station) as it passes overhead, recording thousands of measurements in a small
geographic area (∼ 0.2× 0.2 degrees) over just a few minutes (∼ 5 minutes).
Under these conditions, changes in atmospheric CO2 abundances are negligibly
small, and the OCO-2 data obtained from looking down from space are directly
coincident and comparable with the TCCON data obtained from looking up
from the ground [9]. After some preprocessing of the OCO-2 data, a linear
regression between OCO-2 and TCCON is fitted, and the deviation of the
OCO-2 CO2 product from the WMO scale is quantified [10]. This deviation is
removed from the OCO-2 data, using the fitted regression line, before its use
in scientific studies. Thus, fitting this regression line correctly is imperative,
which we show in this article depends on the error variance of each OCO-2
and TCCON value used in the regression.

The result we obtain for the variance of the OCO-2 value in the regression can
be used in contexts that go beyond this calibration study. For example, flux in-
versions usually work with spatially aggregated mole-fraction data (e.g., from
OCO-2 retrievals), and our research demonstrates how the spatial covariance
of the mole-fraction field determines the all-important aggregated variances.
Another benefit of our research is for small area analysis [10–12], where we
are able to account for dependence in the constituent random variables. This
statistical dependence results in a modification (often reduction) of the num-
ber of observations, which we call the “effective” number of observations. The
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interpretation of these, in terms of reduced information content in the small
areas, is powerful and intuitive.

The rest of the paper is organized as follows. In Section 2, we provide the
details of the errors-in-variables model that is currently used by the OCO-2
validation team. In Section 3, we discuss the selection of weights in their regres-
sion of OCO-2 on TCCON, and we provide sufficient conditions for obtaining
unbiased estimating equations of regression parameters. In this section, we
also illustrate through simulation the benefits of using an unbiased estimating
equation for the regression slope b. We elaborate the statistical-analysis pro-
cedures for individual TCCON and OCO-2 datasets in Section 4, focusing on
modeling the temporal and spatial data-dependence structures of the TCCON
and OCO-2 datasets, respectively. In Section 5, we provide the formulas for
computing the variances of the values fitted in the regression, and we give the
Lamont TCCON site and OCO-2 orbit number 3590 as an example. Conclud-
ing remarks are given in Section 6, and the paper finishes with a technical
appendix.

2 The errors-in-variables model used for OCO-2 calibration

Version 7 of the OCO-2 retrieval data product is publicly available and can be
found at [13]. The regression procedure used to obtain version 7 is described
in [10], as follows. Let (Xi, Yi) be a pair of TCCON and OCO-2 target-mode
observations, where i indexes a combination of station and OCO-2 orbit num-
ber. Suppose there are i = 1, . . . , N such combinations. The errors-in-variables
model in [14,15] was used to model the linear relationship between these pairs,
with TCCON as the independent variable (X) and OCO-2 as the dependent
variable (Y ). An iterative algorithm in [15] was used to estimate the regression
coefficients.

In this article, we show that the weighted-least-squares estimators of the re-
gression coefficients in [14,15] are (asymptotically) unbiased and (statistically)
efficient when the regression weights are properly specified as being inversely
proportional to var(Xi) and var(Yi), respectively, for i = 1, . . . , N . We show
that misspecified weights result in biased estimating equations of the regres-
sion parameter, and hence the resulting regression-parameter estimates and
regression line can be biased (Section 3). TCCON datasets are weakly corre-
lated in time and OCO-2 datasets are highly correlated in space, which must
be accounted for when estimating the variances of Xi and Yi, respectively
(Section 4).

Generally, suppose that {(X1, Y1), (X2, Y2), . . . , (XN , YN)} areN pairs of ground-
monitoring-station data (X) paired with satellite remote sensing data Y . Since
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the data collected by both the satellite and the ground-monitoring stations
have measurement errors associated with them, an errors-in-variables model
is appropriate for modeling their relationship. Assume that E(Xi) = xi and
E(Yi) = yi, where xi and yi are (unknown) true values of Xi and Yi, respec-
tively. Because both datasets attempt to measure the same variable (e.g., in
our application, column-averaged CO2), it is expected that there is a strong
relationship between them. Fitting a linear relationship provides a straightfor-
ward way for correcting the bias in the satellite data using the more accurate
data from the ground-monitoring stations.

In [10], the current errors-in-variables model for producing version 7 of the
OCO-2 retrieval data product is given as follows. For i = 1, . . . , N ,

Xi = xi + εx,i,

Yi = yi + εy,i, (1)

yi = a+ bxi,

where the measurement-error terms, εx,i and εy,i, are assumed to have mean
zero and variances σ̃2

x,i and σ̃2
y,i, respectively. It is also reasonable to assume

that they are mutually independent for all i = 1, . . . , N .

It is important to clarify that Xi and Yi are aggregated data calculated from a
set of individual TCCON observations and a set of individual OCO-2 target-
mode data, respectively. Let nx,i and ny,i denote sample sizes of individual
TCCON and OCO-2 observations for obtaining Xi and Yi, respectively. In
this article, we derive

σ̃2
x,i ≡ var(Xi) = σ2

x,i/ñx,i, σ̃2
y,i ≡ var(Yi) = σ2

y,i/ñy,i, (2)

where σ2
x,i and σ2

y,i are variances of a single TCCON observation and a single
OCO-2 observation, respectively; and ñx,i and ñy,i are the effective sample
sizes, respectively (which are different from nx,i and ny,i). Strong positive
dependence between individual data results in effective sample sizes much
smaller than actual sample sizes (Section 5).

A least-sum-of-weighted-squares criterion was proposed in [16]: This leads to
estimating a and b by minimizing

S(a, b) =
N∑
i=1

wx,iwy,i
b2wy,i + wx,i

(Yi − a− bXi)
2, (3)

with respect to a and b. The resulting estimates, âlws and b̂lws, are func-
tions only of the data {(Xi, Yi)}Ni=1, for given regression weights {wx,i}Ni=1 and
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{wy,i}Ni=1.

Partially differentiating (3) with respect to a and b, one can obtain (see [16]),

b =

N∑
i=1

Z2
i (Yi − Ȳw)

(
Xi−X̄w

wy,i
+ b(Yi−Ȳw)

wx,i

)
N∑
i=1

Z2
i (Xi − X̄w)

(
Xi−X̄w

wy,i
+ b(Yi−Ȳw)

wx,i

) , (4)

where Zi ≡ (wx,iwy,i)/(b
2wy,i + wx,i) depends on b, X̄w =

∑
i
ZiXi/

∑
i
Zi, and

Ȳw =
∑
i
ZiYi/

∑
i
Zi. Based on equation (4), [15] proposed an algorithm that

solves for b iteratively. If it converges, the resulting estimate is b̂lws. Then the
corresponding estimate of a is âlws = Ȳw − b̂lwsX̄w, where X̄w and Ȳw are
evaluated at b = b̂lws.

3 Unbiased estimation of regression parameters

In this section, we find sufficient conditions under which the least-sum-of-
weighted-squares estimators, âlws and b̂lws, are (asymptotically) unbiased. The

estimating equations for regression parameters a and b are ∂S(a,b)
∂a

= 0 and
∂S(a,b)
∂b

= 0, respectively; the estimating equations are unbiased if E(∂S(a,b)
∂a

) = 0

and E(∂S(a,b)
∂b

) = 0, for all a, b ∈ R. Under regularity conditions, unbiased es-
timating equations result in consistent (asymptotically unbiased) estimators
[17,18]. Therefore, unbiasedness of estimating equations of a and b is a desir-
able property.

Recall that {wx,i} and {wy,i} are pre-specified constants; then

∂S(a, b)

∂a
=

N∑
i=1

−2wx,iwy,i
b2wy,i + wx,i

(Yi − a− bXi),

and hence E
(
∂S(a,b)
∂a

)
= 0. Further,

∂S(a, b)

∂b
=

N∑
i=1

−2wx,iwy,i
(b2wy,i + wx,i)2

{b(Yi − a)2wy,i +Xi(Yi − a)wx,i

−b2Xi(Yi − a)wy,i − bX2
i wx,i},

and hence
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E

(
∂S(a, b)

∂b

)
=

N∑
i=1

−2bwx,iwy,i
(b2wy,i + wx,i)2

(σ̃2
y,iwy,i − σ̃2

x,iwx,i), (5)

since E(X2
i ) = σ̃2

x,i + x2
i , E((Yi − a)2) = σ̃2

y,i + b2x2
i , and E(Xi(Yi − a)) = bx2

i .
Recall that σ̃2

x,i = var(Xi) and σ̃2
y,i = var(Yi).

From (5), if

wx,i
wy,i

=
σ̃2
y,i

σ̃2
x,i

, (6)

then E
(
∂S(a,b)
∂b

)
= 0, for all a, b ∈ R. The solution to (5) is b̂lws, which is consis-

tent, provided (6) holds. That is, provided the ratio of the weights associated
with Xi and Yi are equal to the reciprocal of the ratio of their corresponding
true variances, b̂lws is consistent. In the following subsection, we use a sim-
ulation example to show that when the regression weights are misspecified,
the least-sum-of-weighted-squares estimator of b is biased with a large mean
squared error (MSE).

3.1 Effects of regression weights on estimating the slope parameter b

To illustrate the effect of the regression weights on estimating b, consider the
following artificial example based on simulation, where the units of X and
Y are arbitrary and not related to our application to CO2 mole fraction. We
first generated the true covariate values {xi}Ni=1 from a Gaussian distribution,
N(10, 22), and we set the true response values {yi}Ni=1 to be given by: yi =
0.8xi. That is, the true value of a is 0 and the true value of b is 0.8. Then Xi was
randomly generated from a Gaussian distribution with mean xi and variance
σ̃2
x,i = 0.5, while Yi was randomly generated from a Gaussian distribution

with mean yi and variance σ̃2
y,i = 1.5. This was repeated independently for

i = 1, . . . , N . Thus, in the simulation, the true ratio of var(Yi) to var(Xi) is
σ̃2
y,i/σ̃

2
x,i = 3, for all i = 1, . . . , N . We estimated b under four different scenarios:

1) wx,i = 1/0.5, wy,i = 1/1.5, corresponding to the ideal case that specifies the
weights of Xi and Yi to be the reciprocals of their respective true variances
(“True”); 2) wx,i = 1, wy,i = 1/3, corresponding to misspecification of the
weights but correct specification of their ratio (“Equal”); 3) wx,i = 1/2, wy,i =
2, corresponding to a misspecification of the ratio, where wx,i/wy,i = 1/4 is
smaller than the actual ratio, σ̃2

y,i/σ̃
2
x,i = 3 (“Smaller”); and 4) wx,i = 1, wy,i =

1/10, corresponding to a misspecification of the ratio, where wx,i/wy,i = 10 is
bigger than the actual ratio, σ̃2

y,i/σ̃
2
x,i = 3 (“Bigger”). The slope parameter b

was estimated by minimizing the sum-of-weighted-squares objective function
in (3).
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Table 1
Parameter estimation of the slope parameter (b=0.8) under different specifications
of weights. The rows “True,” “Equal,”“Smaller,” and “Bigger” show the results for
Scenarios 1-4, respectively. The 95% confidence interval is obtained as the sample
mean plus/minus twice its standard error calculated from the simulation. The results
are based on 200 simulated datasets for each of the four scenarios, and each of the
three values of N .

N=150 Mean Median MSE 95%CI

True 0.79945 0.79995 1.137 · 10−4 (0.79794, 0.80096)

Equal 0.79945 0.79995 1.137 · 10−4 (0.79794, 0.80096)

Smaller 0.81101 0.81218 2.368 · 10−4 (0.80949, 0.81254)

Bigger 0.79701 0.79758 1.215 · 10−4 (0.79550, 0.79851)

N=500 Mean Median MSE 95%CI

True 0.80036 0.80039 4.043 · 10−5 (0.79946, 0.80126)

Equal 0.80036 0.80039 4.043 · 10−5 (0.79946, 0.80126)

Smaller 0.81242 0.81253 19.38 · 10−5 (0.81153, 0.81331)

Bigger 0.79781 0.79777 4.505 · 10−5 (0.79691, 0.79871)

N=2000 Mean Median MSE 95%CI

True 0.80000 0.79993 7.635 · 10−6 (0.79961, 0.80039)

Equal 0.80000 0.79993 7.635 · 10−6 (0.79961, 0.80039)

Smaller 0.81194 0.81189 150.3 · 10−6 (0.81154, 0.81233)

Bigger 0.79748 0.79740 13.91 · 10−6 (0.79709, 0.79787)

Table 1 gives the mean squared error (MSE) and the 95% confidence interval
(95% CI) for b. First, it is clear that when the weights satisfy the ratio condi-
tion (6), the parameter estimate of b is closest to the true value of b (i.e., it has
the smallest MSE). If (6) does not hold, the resulting estimate of b is biased:
for Scenario 3 (Smaller), the parameter estimate has large positive bias; con-
versely, negative bias is observed for Scenario 4 (Bigger). When we increase
the regression sample size from N = 150 to N = 2000, the first two scenarios
lead to a more accurate estimate of b. Although the MSEs of the third and
fourth scenarios decrease with increasing sample size, these two scenarios still
yield a parameter estimate of b with significant bias.

The (approximate) 95% CI for b is given in the last column of Table 1. For
Scenarios 1 and 2, the 95% CI always contains the true value b = 0.8. For
Scenarios 3 and 4, the confidence interval excludes the true value of b = 0.8
for all three sample sizes. Figure 1 shows the boxplots of b̂lws under the four
different scenarios. A biased estimate of b is observed for both Scenarios 3 and
4, but the bias is clearly worse for Scenario 3 (Smaller).
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Then we test the sensitivity of b̂lws to the ratio of regression weights using
the relative inefficiency (RI), defined as the ratio of the MSE of b̂lws using a
ratio of regression weights to that using the actual ratio, σ̃2

y,i/σ̃
2
x,i. A larger

value of RI indicates a worse specification of the ratio of regression weights.
The upper panel in Figure 2 shows how the RIs of b̂lws change with different
values of the ratio of regression weights, wx,i/wy,i. We fixed wx,i at 1/σ̃2

x,i and
varied the values of wy,i to obtain different ratios of regression weights. The

actual ratio in this panel is σ̃2
y,i/σ̃

2
x,i = 3. It can be seen that the RIs of b̂lws

are much more sensitive to Scenario 3 where the ratios have smaller values
than the actual ratio of 3, which corroborates our results in Table 1. The
lower panel in Figure 2 shows the results for the case σ̃2

y,i/σ̃
2
x,i = 1, in the

simulation described above. Notice that the actual ratio has decreased and,
under Scenario 4 where the ratios have bigger values than the actual ratio of
1, the RIs of b̂lws have worsened in the lower panel. Our general conclusion
remains however, that underestimation of var(Yi)/var(Xi) will lead to more
severely biased estimates of b than its overestimation.

True Equal Smaller Bigger
0.76

0.78

0.8

0.82

0.84

Estimates of b, N=150

(a) N = 150

True Equal Smaller Bigger
0.76

0.78

0.8

0.82

0.84

Estimates of b, N=500

(b) N = 500

True Equal Smaller Bigger
0.76

0.78

0.8

0.82

0.84

Estimates of b, N=2000

(c) N = 2000

Fig. 1. Boxplots of the estimates of b under different specifications of weights. The
true value of b is 0.8.
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Fig. 2. The relative inefficiency (defined as the ratio of MSEs) of b̂lws for different
values of wx,i/wy,i. The dashed line at 1 shows the relative inefficiency of b̂lws using
wx,i/wy,i = σ̃2

y,i/σ̃
2
x,i (σ̃2

y,i/σ̃
2
x,i = 3 for the upper panel, and σ̃2

y,i/σ̃
2
x,i = 1 for the

lower panel).

4 Statistical analysis of dependencies in the original TCCON and
OCO-2 values

Since both Xi and Yi are aggregated data based on a dataset of original TC-
CON observations and a dataset of original OCO-2 observations, respectively,
it is necessary to analyze the temporal (for TCCON) and spatial (for OCO-2)
dependence structures in order to obtain variances of Xi and Yi. The TCCON
and OCO-2 datasets at Lamont/3590 (which refer to the i-th station/orbit
combination) are used to illustrate our methodology.
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4.1 TCCON data analysis

There are on the order of 25 TCCON stations in the world and, in what
follows, we have chosen the Lamont station located in Oklahoma, USA, to
illustrate the appropriate calculation of σ̃2

x,i = var(Xi) and σ̃2
y,i = var(Yi).

The Lamont station is in the Southern Great Plains, which has been widely
studied in climate-model-calibration contexts [19]. On orbit 3590, the OCO-2
satellite was in target mode, obtaining observations around the Lamont station
during a time interval of a few minutes. In the analysis, the mean target time
was first obtained as the average of OCO-2’s target-start-time and target-
end-time; then, as many as 65 TCCON observations, in the time window of
approximately ±1 hour centered at the mean target time, were selected for
statistical analysis. The left panel of Figure 3 shows the selected TCCON data
for Lamont/3590; the right panel shows the locations of the OCO-2 data from
target-start-time to target-end-time.

Time (hour)
19 19.5 20 20.5

X
C

O
2
 (

p
p
m

) 
fr

o
m

 T
C

C
O

N

399.5

400

400.5

401

401.5

402

402.5

403

XCO2 time series from TCCON

Data
Mean target time

Longitude
-97.55 -97.5 -97.45 -97.4

La
tit

ud
e

36.5

36.55

36.6

36.65

XCO2 locations from OCO-2

Fig. 3. The TCCON time series and OCO-2 data locations for Lamont/3590. Left
panel: TCCON observations versus time, where the vertical line is the mean target
time. Right panel: OCO-2 observation locations, where the star shows the location
of the Lamont TCCON station.

Since TCCON data at a given ground-monitoring station are observed over
time, we model TCCON observations as realizations from a temporal stochas-
tic process (i.e., a time series). For the i-th station/orbit (here, Lamont/3590),
let {Xi,1, . . . , Xi,nx,i

} be the nx,i TCCON observations selected in the time
window described above, and let {ti,1, . . . , ti,nx,i

} be their corresponding ob-
servation times. We can expect nx,i = 65, although with missing data it may
be less. We model {Xi,j}

nx,i

j=1 as follows:

Xi,j = xi + εx,i,j, (7)
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where xi is a fixed but unknown constant (in time) mean parameter, and εx,i,j
is a measurement-error term that we assume to be Gaussian with mean zero
and temporal covariance function, Cx(·, ·;θx,i). In what follows, we capture the
temporal dependence through the exponential covariance function,

cov(εx,i,j, εx,i,`) = Cx(ti,j, ti,`;θx,i) = σ2
x,i exp(−|ti,j − ti,`|/φx,i), (8)

where θx,i = {σ2
x,i, φx,i}, and σ2

x,i > 0 and φx,i > 0 are the variance and
range parameters, respectively. In engineering applications, φx,i is sometimes
called the e-folding time, and 3φx,i is sometimes referred to as the equivalent
range. For some TCCON stations/orbits, the time series might indicate a non-
constant trend over time. We remark that the covariance function can help
capture small but apparent departures from a constant trend; if the trend com-
ponent around the mean target time is not constant, then the range parameter
increases to capture the temporal trend in the data.

By using REstricted Maximum Likelihood (REML) estimation for σ2
x,i and

φx,i (see [20,21]), we obtain estimators of covariance parameters that are less
biased than those obtained from Maximum Likelihood (ML) estimation. Let
P = 1

nx,i
1nx,i

1Tnx,i
be a projection matrix, where 1nx,i

is a column vector of nx,i
ones; then the REML approach performs ML estimation on the transformed
data, X̃i = (Inx,i

− P )Xi = (Inx,i
− P )εx,i, where Xi = (Xi,1, . . . , Xi,nx,i

)T and
εx,i = (εx,i,1, . . . , εx,i,nx,i

)T .

The left panel in Figure 4 shows the empirical semivariogram (e.g., see [22])
and the fitted semivariogram using REML parameter estimates; the fitted
semivariogram values match the empirical ones well. We can see that the fitted
semivariogram reaches its sill quickly with increasing time lags, indicating very
weak temporal dependence in the TCCON data. Based on the estimates given
in Section 5, the equivalent range is 3φ̂x,i ' 1.3 · 10−3 hour, which is much
smaller than the time window of 2 hours.

4.2 OCO-2 data analysis

The OCO-2 dataset that targets the TCCON ground station during a given
orbit has spatio-temporal locations in a small spatial region (∼ 0.2 × 0.2
degrees) within a few minutes (∼ 5 minutes). Therefore, a spatial-constant-
mean assumption is likely to hold. Recall that the right panel in Figure 3 shows
the locations of the OCO-2 data from target-start-time to target-end-time for
Lamont/3590; eight footprints are clearly observed (and expected).

Since the time interval of the OCO-2 observations is very short and the cor-
responding spatial locations are changing during the short time interval, we

12
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Fig. 4. Empirical and fitted semivariogram plots for Lamont/3590. Left panel: semi-
variograms for the TCCON (temporal semivariograms) dataset. Right panel: semi-
variograms for the OCO-2 (spatial isotropic semivariograms) dataset.

model the OCO-2 observations using a purely spatial process. Let {Yi,1, . . . , Yi,ny,i
}

be the ny,i OCO-2 observations for the i-th station/orbit, with corresponding
spatial locations {si,1, . . . , si,ny,i

}. At the resolution of 15km, the chordal dis-
tance, which is a Euclidean distance in three-dimensional space, is used to
quantify “closeness” of the OCO-2 data locations.

We model {Yi,j : j = 1, . . . , ny,i} as realizations from a spatial Gaussian pro-
cess, as follows:

Yi,j = yi + εy,i,j, (9)

where yi is a fixed but unknown spatially constant mean parameter, and εy,i,j
is a measurement-error term that we assume to be Gaussian with mean zero
and spatial covariance function, Cy(·, ·;θy,i). Let Cy(·, ·;θy,i) be the flexible
isotropic Matérn covariance function (see [22,23]):

Cy(si,j, si,`;θy,i) =
σ2
y,i2

1−νy,i

Γ(νy,i)

(
‖si,j − si,`‖

φy,i

)νy,i
Kνy,i

(
‖si,j − si,`‖

φy,i

)
, (10)

where θy,i = {σ2
y,i, φy,i, νy,i}, σ2

y,i > 0 is the variance parameter, φy,i > 0 is the
range parameter, and νy,i > 0 is the smoothness parameter. In (10), Γ(·) is the
gamma function, and Kνy,i(·) is a modified Bessel function of the second kind.
The covariance model given by (10) provides extra flexibility for modeling the
smoothness of the process with the inclusion of the third parameter, νy,i. The
exponential covariance function in (8) is a special case of the Matérn model
with νy,i = 0.5; when νy,i tends to infinity, the so-called Gaussian covariance
function is obtained.
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Outliers are typical in most remote sensing datasets; thus, the estimates of
covariance-model parameters need to be robust to the presence of outliers.
We therefore use robust estimators of the semivariogram (e.g., [22,24]) and fit
covariance-function parameters using weighted least squares [22].

The Cressie-Hawkins semivariogram estimator [22] is:

γ̂(h(k)) =
1

2

 1

|N(h(k))|
∑

N(h(k))

|Yi,j − Yi,`|1/2
4

/

(
0.457 +

0.494

|N(h(k))|

)
, (11)

where N(h(k)) ≡ {(j, `) : si,j − si,` ∈ tol(h(k)), and j, ` = 1, . . . , ny,i},
tol(h(k)) is a pre-specified tolerance region around the spatial lag h(k), and
|N(h(k))| is the number of distinct pairs in N(h(k)). Then the parameters
θy,i are estimated by weighted least squares (see [22]); that is, we minimize
with respect to θy,i,

W (θy,i) =
K∑
k=1

|N(h(k))|
(

γ̂(h(k))

γ(h(k);θy,i)
− 1

)2

. (12)

In (12), γ(h(k);θy,i) = Cy(0;θy,i) − Cy(h(k);θy,i) is the semivariogram based
on the covariance model in (10). Notice that γ(·;θy,i) does not depend on the
spatial mean yi, and hence neither does (12). In (12), we choose K initial
lags, where for k = 1, . . . , K, ‖h(k)‖ ≤ 1

2
max{‖si,j − si,k‖ : j, k = 1, . . . , ny,i},

and we adjust tol(h(k)) such that |N(h(k))| does not fall below 30; these are
empirical rules of thumb that work well (e.g., see [25,26]). In our application
to the Lamont/3590 OCO-2 dataset, K = 20 equally spaced spatial lags were
used to evaluate W (θy,i).

We fitted three Matérn models with different smoothness parameters, namely
a Matérn model with ν̂y,i fitted via minimizing (12); the exponential model
(νy,i = 1/2), σ2

y,i exp(−‖si,j − si,k‖/φy,i); and the Gaussian model (νy,i →∞),
σ2
y,i exp(−‖si,j − si,k‖2/φy,i). The right panel of Figure 4 shows the empirical

semivariograms versus the fitted semivariograms obtained from these three
models. It is clear that the fitted Matérn covariance model is the best, due
to its ability to capture the smoothness of the spatial process. The value of
W (θy,i) using the fitted Matérn model is 687.989, which is much smaller than
the fitted exponential model’s value of 1261.964 and than the fitted Gaussian
model’s value of 1384.135.

The empirical semivariogram of the OCO-2 data attains its sill gently as a
function of spatial lag, indicating quite strong spatial dependence. Based on
the parameter estimation results in Section 5, the equivalent range is about
1.37km. Compared with the spatial domain of approximately 15km × 15km,
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the correlations among the OCO-2 observations are substantial, and hence
they will have an effect on σ̃2

y,i = var(Yi) and on ñy,i, the effective sample size.

5 Calculation of Xi and Yi and of their associated variances

In this section, we discuss how to estimate the variances of the measurement
errors of Xi in (7) and Yi in (9), which are then used to define the weights in
(3). Use of inappropriate values of σ̃2

x,i and σ̃2
y,i may lead to biased estimates

of b. The TCCON and OCO-2 datasets at Lamont/3590 (here index i) [27] are
used to illustrate the appropriate calculation of the all-important regression
weights, wx,i = 1/σ̃2

x,i and wy,i = 1/σ̃2
y,i.

5.1 Variance estimation in the TCCON dataset

Generally speaking, TCCON datasets are of very high quality, with very few
outliers. Consequently, the sample mean, Xi ≡ 1

nx,i

∑nx,i

j=1 Xi,j, serves as the i-th

representative point for TCCON in the regression analysis. From the model
(7), Xi = xi + ε̄x,i, where ε̄x,i = 1

nx,i

∑nx,i

j=1 εx,i,j; hence,

var(Xi) = var(ε̄x,i) =
σ2
x,i

nx,i
+

1

n2
x,i

nx,i∑
j=1

∑
k 6=j

Cx,i;j,k, (13)

where Cx,i;j,k = Cx(ti,j, ti,k;θx,i). By substituting into (13) the REML estimates

θ̂x,i = {σ̂2
x,i, φ̂x,i} (Section 4.1) of temporal covariance function parameters θx,i,

var(Xi) can be readily obtained.

If the measurement errors {εx,i,j}
nx,i

j=1 are independent, then var(Xi) = σ2
x,i/nx,i.

In the presence of temporal dependence, the effective sample size, ñx,i (in
contrast to the actual sample size), for computing the variance of Xi is defined
as (see [22], pp. 14-15):

ñx,i = σ2
x,i/var(ε̄x,i) =

 1

n2
x,i

nx,i∑
j=1

nx,i∑
k=1

ρx,i;j,k

−1

, (14)

where ρx,i;j,k = Cx,i;j,k/σ
2
x,i. Formula (14) depends on σ2

x,i and φx,i; estimates

σ̂2
x,i and φ̂x,i are substituted into (14) to obtain the final result. The effective

sample size (14) is always smaller than the actual sample size when the mea-
surement errors are positively correlated. For Lamont/3590, Table 2 shows
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that ñx,i is very close to nx,i, since there is only weakly positive temporal
dependence in the TCCON dataset.

5.2 Variance estimation in the OCO-2 dataset

OCO-2 measurements are based on reflected energy from Earth’s surface that
has traveled through the atmosphere twice. This, and the impact of environ-
mental factors such as clouds and aerosols on the data-retrieval process, result
in high variability and a number of outliers in the OCO-2 dataset. Hence,
rather than the sample mean, the sample median given by Yi = median{Yi,j :
j = 1, . . . , ny,i} ≡ med(Yi,j) is chosen as a robust OCO-2 representative point
in the pair (Xi, Yi) used in the regression. The OCO-2 data are spatially corre-
lated, so we need to specify the (approximate) variance of the sample median
under this dependence; detailed calculations are given in the Appendix.

From the model (9), Yi = yi+med(εy,i,j), and hence var(Yi) = var(med(εy,i,j)).
Under mild conditions that are given in [28,29], the large-sample variance is,

var(Yi) = var(med(εy,i,j)) '
πσ2

y,i

2ny,i
+
σ2
y,i

n2
y,i

ny,i∑
j=1

∑
k 6=j

arcsin(Cy,i;j,k/σ
2
y,i), (15)

where Cy,i;j,k = cov(εy,i,j, εy,i,k) = Cy(si,j, si,k;θy,i). By substituting into (15)

the semivariogram-based weighted-least-squares estimates, θ̂y,i = {σ̂2
y,i, φ̂y,i, ν̂y,i}

(Section 4.2) of spatial covariance parameters θy,i, var(Yi) can be readily ob-
tained.

If the measurement errors {εy,i,j}
ny,i

j=1 are independent, then var(Yi) ' π
2
(σ2

y,i/ny,i).
Consequently, the effective sample size, ñy,i, for computing the variance of Yi
is,

ñy,i =
π

2
·

σ2
y,i

var(med(εy,i,j))
=
π

2

 1

n2
y,i

ny,i∑
j=1

ny,i∑
k=1

arcsin(Cy,i,j,k/σ
2
y,i)

−1

, (16)

which accounts for the reduction of the actual sample size for calculating the
variance of var(Yi) under dependence. Formula (16) depends on σ2

y,i, φy,i, and

νy,i; estimates σ̂2
y,i, φ̂y,i, and ν̂y,i are substituted into (16) to obtain the final

result.

For Lamont/3590, Table 2 shows that the effective sample size ñy,i is much
smaller than the actual sample size ny,i, since there is strongly positive spatial
dependence in the OCO-2 dataset. Similar calculations can be made for flux
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inversions, when variances are needed for spatially aggregated mole-fraction
data.

5.3 Results for Lamont/3590

Table 2 shows the results of parameter estimation and the calculation of ef-
fective sample sizes for both the TCCON and the OCO-2 datasets associated
with Lamont/3590. For the TCCON dataset, the range-parameter estimate
φ̂x,i is very small relative to the 2-hour time window over which the data
were collected, and so the temporal correlations drop quickly with increas-
ing time lags. The weak correlations in the TCCON data lead to an effective
sample size, ñx,i, that is very close to the actual sample size nx,i. For the

OCO-2 dataset, the range-parameter estimate φ̂y,i is much larger, relative to
the 15km× 15km spatial window in which the data were collected. Hence, the
strongly positive spatial correlations in the OCO-2 data result in an effective
sample size, ñy,i, that is much smaller than the actual sample size ny,i.

Table 2
Parameter estimation results and the effective sample sizes for Lamont/3590.

TCCON Xi σ̃2
x,i S2

x,i nx,i ñx,i σ̂2
x,i φ̂x,i ν̂x,i

401.0840 0.0063 0.3602 65 57.05 0.3607 0.0039 0.5(fixed)

OCO-2 Yi σ̃2
y,i S2

y,i ny,i ñy,i σ̂2
y,i φ̂y,i ν̂y,i

400.0395 0.0023 0.3025 2961 202.32 0.2989 0.7117 0.1849

Based on our calculations from (6), we obtain the relative regression weights of
wx,i/wy,i = σ̃2

y,i/σ̃
2
x,i = 0.3651. For version 7 of the OCO-2 retrieval data prod-

uct, the calculation used wx,i/wy,i = S2
y,i/S

2
x,i = 0.8398, where S2

x,i and S2
y,i

are sample variances of the individual TCCON and OCO-2 datasets, respec-
tively. The sample variances were used to define weights for version 7 of the
OCO-2 retrieval data product, because they better reflect variability observed
in the data than the squared standard errors. Based on our calculations in
this article, the sample-variance-based weights used for version 7 overestimate
the approximate ratio of weights for Lamont/3590 (i.e., Scenario 4, which is
“Bigger”).

6 Concluding remarks

In this paper, we have proposed a statistical procedure for obtaining regres-
sion weights that lead to consistent estimation of regression coefficients. The
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application is to calibration of satellite remote sensing observations obtained
by looking down from space, calibrated to ground-based observations obtained
by looking up from the ground. Specifically, OCO-2 values {Yi} are regressed
on TCCON values {Xi}. In this article, we show that the appropriate regres-
sion weights depend on temporal (TCCON) and spatial (OCO-2) dependence
structures. Specification of the regression weights associated with Xi and Yi
are crucial for obtaining an (asymptotically) unbiased, least-sum-of-weighted-
squares estimator, b̂lws. When wx,i/wy,i = σ̃2

y,i/σ̃
2
x,i, the estimating equation for

b is unbiased, which results in (asymptotically) unbiasedness of b̂lws. There-
fore, it is desirable to use unbiased estimates of variances of Xi and Yi for
defining the weights. Since Xi and Yi are aggregated data calculated based on
sets of individual TCCON and OCO-2 observations, respectively, we explore
the temporal-dependence and spatial-dependence structures in the TCCON
and OCO-2 datasets for estimating σ̃2

x,i and σ̃2
y,i, respectively. Based on our

analysis, the individual observations in the TCCON dataset are weakly cor-
related in time, resulting in an effective sample size very close to the actual
sample size; in contrast, the individual observations in the OCO-2 dataset
have nonnegligible correlations in space, resulting in an effective sample size
much smaller than the actual sample size. Our results show that any bias
correction to produce a new version of the OCO2 data should use regression
weights that are statistically determined.

Version 7 used TCCON and OCO-2 datasets at N = 66 station/orbit com-
binations. Future work will result in a careful analysis of all these datasets,
which can then be used to obtain consistent estimators, âlws and b̂lws. This
work will build on the substantial methodology given in the preceding sections
and the appendix.
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APPENDIX . Approximate variance of the sample median under
dependence

We provide some details for obtaining the approximate variance of the sample
median under dependence. Since many of the target-mode OCO-2 datasets
contain outliers, the sample median replaces the sample mean as the repre-
sentative value, Yi, for the i-th station/orbit. Recall that we model an OCO-2
dataset as a realization from a Gaussian process with a constant mean yi and
an isotropic spatial covariance function, Cy(·, ·;θy,i) given by (10). Under mild
conditions, the sample median converges almost surely to yi and, to leading
order, we may write the sample median as (see [28,29]),

Ỹi = yi +
1

ny,i

ny,i∑
j=1

sgn(Yi,j − yi)/(2f(yi)).

In the equation above, the function, sgn(x), is a sign function such that
sgn(x) = 1 if x > 0, sgn(x) = 0 if x = 0, and sgn(x) = −1 if x < 0; and
f(·) is the density function of Yi,j, which here is Gaussian.

Therefore, the asymptotic variance of the sample median is, to leading order,

var(Ỹi) =
1

n2
y,i

ny,i∑
j=1

ny,i∑
k=1

cov(sgn(Yi,j − yi), sgn(Yi,k − yi))/(2f(yi))
2

=
1

n2
y,i

ny,i∑
j=1

ny,i∑
k=1

E(sgn(Yi,j − yi)sgn(Yi,k − yi))/(2f(yi))
2

=
1

n2
y,i

ny,i∑
j=1

1

(2f(yi))2
+

1

n2
y,i

ny,i∑
j=1

∑
k 6=j

E(sgn(Yi,j − yi)sgn(Yi,k − yi))/(2f(yi))
2,

since E(sgn(Yi,j)) = 0 and E(sgn(Yi,j)
2) = 1. Now,
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E(sgn(Yi,j − yi)sgn(Yi,k − yi)) =E(1Yi,j>yi1Yi,k>yi)− E(1Yi,j>yi1Yi,k<yi)

−E(1Yi,j<yi1Yi,k>yi) + E(1Yi,j<yi1Yi,k<yi)

=P (Yi,j > yi, Yi,k > yi)− P (Yi,j > yi, Yi,k < yi)

−P (Yi,j < yi, Yi,k > yi) + P (Yi,j < yi, Yi,k < yi).

By Sheppard’s theorem in [30], P (Yi,j > yi, Yi,k > yi) = 1
4
+ 1

2π
arcsin(Cy,i;j,k/(Cy,i;j,jCy,i;k,k)

1/2),
where Cy,i;j,k is the covariance of Yi,j and Yi,k, and Cy,i;j,j = Cy,i;k,k = σ2

y,i. Since
P (Yi,j < yi, Yi,k < yi) = P (Yi,j > yi, Yi,k > yi), and

P (Yi,j > yi, Yi,k < yi) + P (Yi,j < yi, Yi,k > yi) = 1− 2P (Yi,j > yi, Yi,k > yi),

we readily obtain,

E(sgn(Yi,j − yi)sgn(Yi,k − yi)) =
2

π
arcsin(Cy,i;j,k/(Cy,i;j,jCy,i;k,k)

1/2).

Recall that in the Gaussian case, the marginal density results in f(yi) =
(2πσ2

y,i)
−1/2, and hence 1/(2f(yi))

2 = πσ2
y,i/2. Therefore, the asymptotic vari-

ance of the sample median is,

var(med(Yi,j)) =
1

ny,i
·
πσ2

y,i

2
+

1

n2
y,i

ny,i∑
j=1

∑
k 6=j

2

π
arcsin(Cy,i;j,k/σ

2
y,i) ·

πσ2
y,i

2

=
σ2
y,i

ny,i

(
π

2

)
+
σ2
y,i

n2
y,i

ny,i∑
j=1

∑
k 6=j

arcsin(Cy,i;j,k/σ
2
y,i)

=
σ2
y,i

n2
y,i

ny,i∑
j=1

ny,i∑
k=1

arcsin(Cy,i;j,k/σ
2
y,i).
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