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Statistical bias and variance for the regularized-inverse problem: application to
Space-based atmospheric CO2 retrievals

Abstract

Remote sensing of the atmosphere is typically achieved through measurements that are high-resolution
radiance spectra. In this article, our goal is to characterize the first-moment and second-moment
properties of the errors obtained when solving the regularized inverse problem associated with space-
based atmospheric CO 2 retrievals, specifically for the dry air mole fraction in a column of the
atmosphere. The problem of estimating (or retrieving) state variables is usually ill-posed, leading to a
solution based on regularization that is often called Optimal Estimation (OE). The difference between the
estimated state and the true state is defined to be the retrieval error; error analysis for OE uses a linear
approximation to the forward model, resulting in a calculation where the first moment of the retrieval error
(the bias) is identically zero. This is inherently unrealistic and not seen in real or simulated retrievals. Non-
zero bias is expected since the forward model of radiative transfer is strongly nonlinear in the
atmospheric state. In this article, we extend and improve OE's error analysis based on a first-order,
multivariate Taylor-series expansion, by inducing the second- order terms in the expansion. Specifically,
we approximate the bias through the second derivative of the forward model, which results in a formula
involving the Hessian array. We propose a stable estimate of it, from which we obtain a second-order
expression for the bias and mean squared prediction error of the retrieval.
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Statistical bias and variance for the
regularized-inverse problem: Application to
space-based atmospheric C'Os retrievals

N. Cressie’ R. Wang! M. Smyth! and C. E. Miller?

Abstract

Remote sensing of the atmosphere is typically achieved through mea-
surements that are high-resolution radiance spectra. In this article, our
goal is to characterize the first-moment and second-moment properties of
the errors obtained when solving the regularized inverse problem associ-
ated with space-based atmospheric C'Oy retrievals, specifically for the dry
air mole fraction in a column of the atmosphere. The problem of estimat-
ing (or retrieving) state variables is usually ill-posed, leading to a solution
based on regularization that is often called Optimal Estimation (OE). The
difference between the estimated state and the true state is defined to be
the retrieval error; error analysis for OE uses a linear approximation to the
forward model, resulting in a calculation where the first moment of the re-
trieval error (the bias) is identically zero. This is inherently unrealistic and
not seen in real or simulated retrievals. Non-zero bias is expected since the
forward model of radiative transfer is strongly nonlinear in the atmospheric
state. In this article, we extend and improve OE’s error analysis based on
a first-order, multivariate Taylor-series expansion, by inducing the second-
order terms in the expansion. Specifically, we approximate the bias through
the second derivative of the forward model, which results in a formula in-
volving the Hessian array. We propose a stable estimate of it, from which we
obtain a second-order expression for the bias and mean squared prediction
error of the retrieval.
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e The retrieval of XCO2 is a nonlinear ill-posed inverse problem with non-zero
bias.

e First-moment and second-moment statistical properties of atmospheric CO,
retrievals from satellite remote sensing instruments are approximated.

e The approximations are assessed in a realistic simulation experiment and
found to perform well.

1 Introduction

Remote sensing of the atmosphere by satellites is typically achieved through a
combination of physics and statistics. The physics is captured through a forward
function, yet every retrieval is recognized to have error associated with it. This
article presents a statistical approach to estimating the mean and variance of the
retrieval error (the retrieved state vector minus the true state vector) from radi-
ances that are connected to the state through a forward function that is modeled
using a simpler forward model. Our goal here is retrieval of atmospheric C'O, and
we work within the framework of Rodgers (2000), using a nonlinear forward model
and Bayesian inverse methods; this has sometimes been called Optimal Estimation
(OE).

The error analysis given by Rodgers (2000) is a first-order analysis that proceeds
as if the forward model is linear, and it always gives the result that the mean of the
retrieval error (i.e., bias) is identically zero. However, because the forward model
is nonlinear, there is generally a non-zero bias that we henceforth call nonlinearity
bias.

In this article, we develop expressions that quantify the nonlinear contributions
to atmospheric C'O, retrieval errors; they are based on capturing nonlinearity
through the Hessian array, which is the second derivative of the forward model.
Its stable estimation is critical, and a key contribution of this article is to present
a weighted estimate that preserves symmetry properties of the Hessian array. Our
results apply to any retrieval obtained by solving an inverse problem through
regularization, and hence they are applicable to the many remote sensing retrievals
that are based on a radiative transfer function.

In the context of remote sensing of atmospheric C'O,, there have been a number
of articles discussing OE of the state based on instruments such as SCIAMACHY,
GOSAT, AIRS, and OCO-2; see, for example, Bdesch et al. (2006); Connor et al.
(2008); Kuze et al. (2009); Bréon and Ciais (2010); Bdesch et al. (2011); Crisp
et al. (2012); O’Dell et al. (2012); Cressie and Wang (2013). In this article, we
develop statistical methodology for a second-order error analysis that recognizes
nonlinearity of the forward model that connects the state of atmosphere with



high-resolution radiance spectra measured by the remote sensing instruments on
board GOSAT and OCO-2 (e.g., Crisp et al. 2014). The full multivariate distribu-
tion could be obtained through a Markov chain Monte Carlo (MCMC) algorithm
(e.g., Tamminen and Kyrola 2001; Tamminen 2004), but the computing time for
one retrieval takes on the order of a day.

In Section 2, we present details of the experiment we conducted to look at the
properties of the retrieval error, including bias due to nonlinearity of the forward
model. Section 3 briefly reviews OE and its error analysis. Section 4 presents
our statistical methodology that recognizes and estimates bias due to the inherent
nonlinearity of the forward model. This is done through a second-order, multi-
variate Taylor-series expansion resulting in the Hessian array; using the approach
of statistical estimating equations, a stable estimate of the Hessian array is de-
rived. In Section 5, we present the results of the experiment described in Section
2. Discussion and conclusions are presented in Section 6.

2 Synthetic OCO-2 Data: A Controlled Experi-
ment

This section describes an experiment we conducted to determine the influence
of nonlinearity on the mean and variance of the retrieval error. More details
are given in Section 5, where the results of the experiment are presented. The
experiment involves simulations from a known nonlinear forward model, where
the time atmospheric state is known (but not used in the retrieval).

Radiances are simulated that are typical of those seen by GOSAT, with an
ACOS forward model (Crisp et al., 2012) that emulates retrievals from OCO-
2: The atmospheric state is first simulated; then the nonlinear forward model
is applied (here, Version B5.0 of the ACOS/OCO-2 forward model); and finally
measurement error is added to yield synthetic high-resolution radiance spectra.
Critically, because in the experiment the state is known, the retrieval error can be
obtained exactly. From a large number of such simulations, the distribution of the
retrieval error can be obtained. In this article, our goal is to obtain estimates of
the dry air mole fraction of COy in a column (XCO2), which is the key quantity
used in flux inversion, along with its uncertainty quantification.

Repeating this under different scenarios, most notably location/season (varying
albedo, aerosol optical depth, and vertical distributions), “aerosols,” and “clear
sky,” generates scenario-specific distributions for the retrieval errors. Recall that
the mean of the retrieval error is simply the bias due to the nonlinearity of the
forward model; that bias must be zero if the forward model is linear.

Based on a pilot study to determine the important geophysical factors to con-



sider, the aerosol/clear sky factor emerged as the most sensitive to nonlinearity
bias. Hence, we chose 18 GOSAT locations over Australia during different seasons
in order to generate a variety of atmospheres (see Figure 1), and we simulated
with aerosols present or not. The mean of the state was obtained from climatol-
ogy, as is done for OCO-2 retrievals (Crisp et al., 2014). Importantly, we generated
forward, using a multivariate Gaussian distribution to obtain 700 simulations of
the atmospheric state for each scenario (i.e., for a given location/season and given
presence/absence of aerosols). Relative Monte Carlo accuracy to the first decimal
place is achieved with this number of simulations.

For each simulated state, a radiance vector was simulated, again by generating
forward from version B5.0 of ACOS/OCO-2’s full-physics forward model (Crisp et
al., 2014) and random noise was added to capture errors due to measurement by
the instrument on board the satellite. The end result was that, for each scenario,
700 synthetic radiance vectors were available for analysis.

For each radiance vector, the next step in the experiment is to retrieve the
atmospheric state, particularly the column-averaged dry-air mole fraction (XCO2)
in parts per million (ppm). To exercise strong control on the experiment, we use
exactly the same forward model and covariances for the retrieval as were used in
the simulations. This avoids confounding errors due to model misspecification with
those due to nonlinearity, when attributing discrepancies found in retrieval-error
properties.

Consequently, for each of the 700 radiance vectors, there is an estimated state
vector obtained from the level-2 algorithm, B5.0. Although not used in the re-
trieval, we also have available the respective true state vectors, from which we
can trivially construct, by subtraction, 700 retrieval-error vectors (= estimated
state vector — true state vector). In practice, the true state vector is never known,
and one must use statistical methodology to obtain properties (e.g., first and sec-
ond moments, or all moments through MCMC) of the retrieval-error distribution.
Hence, the distribution of retrieval error for each scenario, obtained from the sim-
ulation, represents the gold standard against which all error analyses, linear and
nonlinear, can be compared.

In the next section, we establish the necessary notation to discuss the state-
space model and the retrieval algorithm obtained from it. Finding the first-moment
and second-moment statistical properties of the retrieval error of the multivariate
state is the focus of this article; Section 5 gives the results obtained from the
controlled experiment described above.
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Figure 1: Map showing the 18 locations at which retrievals were performed during
different seasons. At each location, 700 atmospheres and radiances were simulated
using climatology, a full-physics forward model, and known measurement-errors
characteristics.



3 Radiative Transfer Function and Optimal Es-
timation

In this section, we describe briefly the statistical model given in Rodgers (2000),
and we summarize the specific implementation used for the ACOS/OCO-2 re-
trievals. The first part of the statistical model is based on the physics of radiative
transfer that links measured radiances to the physical state of a column of the
atmosphere sampled by the light path. It is here that the measurement uncer-
tainty is accounted for. The second part of the statistical model recognizes that
the atmospheric state vector (e.g., COs volume mixing ratios at different pressure
levels, surface pressure, aerosols, albedo, and so forth) is not completely certain,
and its uncertainty is described by a statistical distribution with a given mean
vector and a given covariance matrix. In the terminology of OE, these are called
the prior mean vector and the prior covariance matrix, respectively. In the ter-
minology of state-space modeling, these are called the mean and covariance of the
state, respectively.

3.1 State-Space Model

As explained above, the statistical model for retrieving the atmospheric state (x)
from measured radiances (y) is divided into two parts. The first part is the mea-
surement equation (relating y to x), and the second part is the state equation
(capturing the variability of the state x); see, for example, Shumway and Stoffer
(2006), for a description of state-space modeling and estimation. The measurement
equation, which includes the (typically nonlinear) forward model F(x), is

y=F(x)+e. (1)

In (1), € is an n.-dimensional error vector that captures both measurement error
in the radiances y and specification error incurred by approximating the physics
of radiative transfer through a generally nonlinear “working function” (or for-
ward model) F(-). For the remote-sensing application considered in Section 5,
ne = 2040. Assume that € ~ Dist(0,S;), where S, = cov(g) is a given n. X n.
covariance matrix of measurement errors and Dist(p, ) denotes a generic multi-
variate distribution with mean vector g and covariance matrix 3; there may be
other parameters that determine the distribution, but our interest centers on the
first two. For example, Dist is often chosen to be the multivariate Gaussian (Gau)
distribution. Cressie and Wang (2013) consider the general case where F(g) # 0,
and they show how the data y can be corrected to account for a non-zero mean.
Hence, we can assume without loss of generality that E(e) = 0.



The state x is an n,-dimensional vector (typically, n, << n.), and it is not
known exactly; the state equation (called the prior model in the terminology of
OE) expresses this uncertainty through,

X =X, + (2)

where x, is a known prior-mean specification of the state, a is an error vector,
and all vectors in (2) are n,-dimensional. It is assumed that a ~ Dist(0,S,),
where S, = cov(a) is a given n, X n, covariance matrix, and note that Dist(-, -)
for a may be different from that for € in (1). For the remote sensing application
considered in Section 5, n, = 50.

We note that there remain parameters in the forward model and variance-
covariance parameters in (1) and (2) that need to be specified or estimated. A
fully Bayesian approach would put prior distributions on them; in this article,
we assume that the measurement and state equations are completely known, as
does Rodgers (2000) and those that follow.

The inverse problem is to infer the state x from data y; this results in the
estimated state x, which in remote sensing is typically used to compute geophysical
parameters of the atmosphere (e.g., XCO2). The ACOS/OCO-2 algorithm uses
Twomey-Tikhonov regularization (Tikhonov, 1963; Twomey, 1963) to solve the
problem; see Section 3.2.

Let {z(p):0 < p < Py} denote the CO, volume mixing ratios (VMRs) for
every pressure level p from the surface pressure Py, to the top of the atmosphere.
Then, for pre-determined pressure levels, 0 < p; < py < -+ < pp, < Py, we
define the np-dimensional subvector,

z(p1)
Xp = : . (3)
Z(Pnp)

We then partition the full state vector x into two (or possibly more) components
as:

=[x X

where xp is that part of the state vector pertaining to the C'O; profile, and xq
represents all non-C'O, state-vector elements, including the surface pressure, sur-
face albedo, profiles of HyO, temperature, aerosols, and so forth. Using obvious
notation, we see that the dimension of x¢ is ng = no —np. Hence, we can partition

the prior mean as,
x| 2], )

XQ7a
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and the prior covariance matrix as,

S, = [ Sppa SPQa (6)

P0a SQQ.a

As will be seen in Section 5, it is useful to have the definitions (3)—(6), in
order to extract statistical properties of estimated C'Oy values from the statistical
properties (given in Section 4) of the full state vector x.

3.2 The Retrieval

Rodgers (2000) proposes an OE (often called a Bayesian) solution to the retrieval
problem, which we summarize below. The mazimum a posteriori (MAP) estimator
is defined to be the state (or set of states, if it is not unique) x such that the
posterior distribution evaluated at x satisfies:

P(x|y) > P(x|y), (7)

for all possible states x, where P(x|y) denotes the posterior distribution of the
state x given the data y. That is, the state x in (7) is the posterior mode.

If the random vectors in both (1) and (2) are Gaussian then, up to an additive
constant, —2 logP(x|y) is equal to

(y —F(x))'S:H(y — F(x)) + (x —xa)'S; " (x — xa), (8)

and finding the posterior mode is equivalent to minimizing (8) with respect to x. If

the random vectors € in (1) and « in (2) are more generically distributed according

to Dist, the criterion (8) can still be used, since it solves the general problem of

regularization formulated independently by Tikhonov (1963) and Twomey (1963).
Define the Jacobian, SF ()
F(x

K(x) = =522 9

which is a matrix of order n. X n,. Minimizing expression (8) implies that x

satisfies,

—K(x)'S: 'y —F(x)) + 8, (x —xa) =0, (10)

which consists of n, equations in n, unknowns. The Gauss-Newton iteration
scheme to solve (10) results in:

KD = xO {81+ (KO STKOYHKOYSH (y —F(x) =8, (x =),
(11)

where K = K(x(¥) and ¢ = 1,2,.... Equation (11) is iterated for increasing
¢ =1,2,... until convergence, resulting in the estimated state vector, X. Now (11)

8



can be unstable, so the OCO-2 algorithm uses a Levenberg-Marquardt approach
(Levenberg, 1944; Marquardt, 1963) to solving (10).

By way of introduction to the next section, we would like to point out that
the Jacobian matrix, K(x), is a first-order quantity, obtained from a first-order,
multivariate Taylor-series expansion; it is the first derivative of the forward model
F(x), and it captures the locally linear behavior of F. However, if the Taylor-
series expansion is extended to second-order, the second derivative of F(X), which
is called the Hessian array {H;;x(x)}, is needed to obtain a second-order approxi-
mation of the bias of the retrieval. Since the Hessian array is the second derivative
of the n.-dimensional vector F(x), it is defined for i = 1,... ,n., j = 1,...,n,,
and k =1,...,n,. For the remote sensing application considered in Section 5, the
number of entries in the Hessian array is 2040 x 50 x 50.

4 Bias and Mean Squared Prediction Error

In general, the forward model is nonlinear, and a statistical error analysis of the
optimally estimated state x should recognize the consequences of this. In this
section, the delta method (e.g., Meyer, 1975, Ch. 10) is used to obtain approxima-
tions for the bias vector, F(x —x), and the mean squared prediction error (MSPE)
matrix, F{(X — x)(x — x)'}. Nonlinearity in the forward model leads to non-zero
bias of x, which the OE error analysis of Rodgers (2000) neglects by assuming it
is zero.

The converged solution to (11) (or the Levenberg-Marquardt version of this)
satisfies:

X = xo+GE){(y-F&)+ K& (% —x4)}
_|_

where

G(x) = {8, +K(x)'S;'K(x)} 'K(x)'s_"
Ax) = GH)K(X).

The quantities G(x) and A(x) are called the gain matriz and the averaging-kernel
matrix, respectively, and in general they are functions of the true state x.

4.1 MSPE Matrix

Cressie and Wang (2013) use the delta method in the multivariate setting to show
that to second order,

cov(X) =~ cov(X) = A(X4)SaA(Xs) + G(x%4)S:G(Xa)', (13)

9



and

cov(x,X) =~ Cov(X,X)
€ 5

Il

Q »
»
\
wn
Q

cov(x,e) ~ Ccov(x,e) =

When the forward model F(-) is linear, A(x,) and G(x,) do not depend on x,,
and “~" becomes “=" in the three relations above.

The delta method in statistics involves a Taylor-series expansion, usually in a
univariate setting, but here for a vector. We give the expansion of the retrieval x
about the prior mean x,, although our results are true for the expansion about
any fixed vector x°. If the prior mean x, is believed to be less reliable due to
insufficient knowledge of the statistical structure of the true state, a better choice
for the Taylor-series expansion might be a starting vector of the iteration that
solves (10). (We note that expanding the Taylor series about the retrieved vector
% does not give valid results for the bias and MSPE, since this is a random vector.
Many implementations of OE in fact do this; see O’Dell et al. (2012).

_ Tosecond order, the MSPE matrix can be approximated as follows: F {(X —x)(X —x)'} ~
MSPE(x,), where

MSPE(x,) = (A(xq) —DSa(A(xs) = I) + G(%4)S.G(x,),  (14)

which is derived in Cressie and Wang (2013). Once again, when the forward
model F(-) is linear, A(x,) and G(x,) do not depend on x,, “~" becomes “=,"
and the MSPE matrix is exactly equal to (14). Using standard matrix algebra, it

is straightforward to show that (14) is equivalent to
(K(x)'S;'K(x) +8,1) 7! =5,

which OCO-2 calls the error covariance matrix (O’Dell et al., 2012; Crisp et al.,
2014). Strictly speaking, S should be called the mean squared prediction error
matrix; it is easy to see that S is the error covariance matriz only when the bias
vector is zero.

4.2 Bias Vector

Because of the nonlinearity of the forward model, x will be a biased estimate of
the state vector x. That is, the retrieval error, x — x, will have a distribution
that is offset from 0. To obtain the bias, F(x — x), one can again use the delta
method by expanding the mean of X around its prior mean x, and keeping terms
of the expansion up to second order. Then, to second order, the bias vector can

10



be approximated as follows: F(% — x) ~ bias(x,), where

<vec <8A X, ) 1st- row))

bias(x,) = (1/2) <Vec<aA i row)) vec (MSPE(x,) + 2S.A(x..))

0A(x
(Vec < nath—row> >

vec IG( Xoc 1st- row))

] (= (aG . S

]
(e (50)

which is derived in Cressie and Wang (2013). In (15), the ‘vec’ operator is de-
fined as follows: For any m X n matrix B = (Bl, -, B,,) with n-dimensional
columns By, -, B,,, vec(B) is defined as the mn-dimensional vector, vec(B) =
(B},---,B. ). We call bias(x,), defined by (15), the nonlinearity bias.

A consequence of the forward model F(x) being nonlinear is that K(x), G(x),
and A(x) depend on the true state x, and hence their derivatives with respect to
x are generally non-zero. When the forward model is linear, K, G, and A are
constant, and hence E(x — x) = 0 = bias(x,). In the next section, we see that
a non-zero value for expression (15) is directly attributable to the Hessian array,
which recall is the second derivative of the forward model.

4.3 The Hessian

A
In the bias formula (15), the partial derivatives, 9G(x) and 0 (X), are functions
al‘k axk
L . 0K (x) .
of the derivatives of the Jacobian, { :k=1,-+-,n4}; see the expressions
Tk
just below (12). Specifically,
0G(x) . _ | OK(x) 0K (x)
S, + K(x)'S;'K H=—",8 'K S:t
- (821 + KOS K G} | 2528 K00 + Keo's 0

{821 + K(x)'S K (x)) K (xS +

11

(15)

- vec (K(xa) . l\N/ISPE(xa) — 2SsG(Xa)/> ;



0K (x)'

{s.' + K(X)/SglK(X)}_lTkaj ; (16)
and
0A(x) 0G(x) 0K (x)
0K (x)

Thus, calculation of the partial derivatives of the Jacobian,

k= 1,...,na},
8$k
is needed for calculating the nonlinearity bias given by (15). Notice that because

K(x) is an n. X n, matrix, the array just above has n. X n, x n, elements.
Now, since the Jacobian is itself a first derivative, any element in the array can
be written as,

Hi(x) = 7.0, i=1,....,n., j=1,...,na,k=1,...,n,. (18)
j

We call { H;;,(x)} the Hessian array; the subscript ¢ ranges over n. elements, which
for the OCO-2 instrument come from three spectral bands (Oxygen A band, Weak
C'Os band, and Strong C'Oy band); and the subscripts j and k each range over n,
elements.

Figure 2 illustrates the structure of the Hessian array.

An important property of the Hessian array (18) is that it is symmetric in j
and k. Thus, any estimate of it should preserve this property, namely Hj,(x) =
H;,;j(x). We achieve this below by using the approach of statistical estimating
equations.

The Hessian element H;j(-) can be estimated by taking a numerical derivative
of the Jacobian, where the Jacobian is evaluated analytically: Let Kj;(x) denote
the (i, j)-th element of the n. x n, Jacobian matrix K(x), and define

~ KZ"X‘FAG —KZ“X
Hijk(x) = J( kA:) ( ) :

(19)

fori=1,...,n., and j,k =1,...,n,. In the expression (19), e is the vector with
1 as the k-th element and 0 everywhere else, and A; > 0 is a small increment. In
general, symmetry of the estimate (19) does not hold; that is, Hyjx(-) # Hi(-).

The following approach to estimating {H;;x(x)} uses statistical estimating
equations, and it will guarantee symmetry in 5 and k: There are two estimat-
ing equations for H;;;(x) that follow from (19), namely

ApHijr(x) = Kij(x + Ager) — Kij(x),

and
AjHijk(X) = sz(X + Ajej) — sz(X) .

12
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Figure 2: The form of the n. xn, xn, Hessian array. For the OCO-2 algorithm, the
index ¢ ranges over the Oxygen A (OA) band, the Weak CO, (WC) band, and the
Strong CO4 (SC) band. For the retrievals in Section 5, 1. Xng,xn, = 2040 x 50 x 50;
then the Hessian array has 5,100,000 entries.

Upon adding these two equations, we obtain
(Ak + Aj)Hije(x) = Kij(x + Apey) — Kij(x) + Kin(x + Aje;) — Ki(x)

which yields the estimate,
. - Ay ~ A
H;; =H; ——— | + Hy, — 20

fori=1,...,n.and j,k = 1,...,n,. Notice that the Hessian estimate (20) is a
weighted combination of the asymmetric estimates given by (19), and it is easy to
see that ]'—A[Z-jk (x) = ﬁikj (x), which is the required symmetry property in j and k.
0K (x)
Tk
from the formulas given at the beginning of this subsection, can then be used to ob-

Now {f[wk(x)} given by (20) is an estimate of { :k=1,...,n,p which,

G A
tain estimates of 0 5 () in (16) and 0 5 (@) in (17). Finally then, the nonlinearity
T T

bias can be calculated from (15).

13



5 Properties of the Retrieval Error of XCQO2

Section 2 describes an experiment we conducted to determine the influence of non-
linearity on the first two moments of the retrieval error. Our experiment exercises
“strong control.” This means that the functional form of the model and every
parameter used to simulate forward from state mean x,, to obtain true state x
based on state covariance matrix S,, and to finally obtain radiances y based on
forward model F(x) and measurement-error covariance matrix S., is exactly the
same when using the Levenberg-Marquardt algorithm to obtain the retrieval x. In
this simulation experiment, states and measurements are realistic, and uncertain-
ties are uniquely due to the ill-posed nature of retrieval and not due to using a
misspecified forward function in the Levenberg-Marquardt algorithm.

Although x is known in the experiment, it is not used in the retrieval; its role
is to allow us to determine the true retrieval error, x — x. If the simulation is
repeated L times, where L is large, then in obvious notation,

{(xO —x®.1=1,..., L}, (21)

gives the distribution of the true retrieval error. We use L = 700 below, for which
relative Monte Carlo accuracy to the first decimal place is achieved.

Since the forward model F(x) is nonlinear, the statistical distribution of x — x
is not Gaussian, although its first two moments remain important for inference. It
is here where an MCMC approach is a useful research tool, since the full posterior
distribution is obtained. However, the excessive time taken to run the MCMC
algorithm for a single retrieval (on the order of a day) means it is unimaginable
that it might become an operational tool.

The methodology proposed in this article is computationally efficient enough
to be made operational on selected retrievals (e.g., when aerosols are present, or
for selected retrieval modes). The first moment expresses the bias of the retrieval,

bias = F(x — x). (22)
Inference on x from the estimate X is based on the second central moment,
cov = cov(X — X). (23)

Notice that OCO-2’s retrieval algorithm produces instead the second non-central
moment,

MSPE = E ((x — x)(% — x)') , (24)

which is appropriate when bias = 0. In general,
cov = MSPE — (bias)(bias)’,
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and so cov can be recovered from the moments (22) and (24). In what follows
in the experiment, we shall use (22) and (24) to summarize the results; these are
sometimes called Figures of Merit (Cressie and Burden, 2015).

Apart from choosing 18 different location /seasons to generate a variety of atmo-
spheric states, the two factors that we controlled for were the presence/absence of
aerosols in the forward model (and hence in the retrieval), and the presence/absence
of the nonlinearity-bias correction. The “response” of the experiment centered on
the first two moments of XCO2, the column-averaged C'Oy dry air mole function.
The state variable XCO2 is obtained by an appropriately weighted combination
of the n, = 20 VMRs of CO, at the 20 pressure levels given in ACOS/OCO-2’s
forward model (Crisp et al., 2014).

In what follows in this section, we write x = true XCO2 value at a given
sounding, which in practice is an unknown scalar. Correspondingly, we write
Z(y) = estimated XCO2 value, featuring the radiances y measured at the given
sounding. The theory of OE assumes that z is a random variable; and from
the theory of statistical estimation, Z(y) is also a random variable with strong
statistical dependence on x. Then the retrieval error for estimating XCO2 is,

i(y) — =,

which is a random variable whose distribution is ultimately determined by the
joint distribution of z and y.
Recall that there are 5 = 1,..., 18 diverse soundings and [ = 1,...,700 simu-
lations for each sounding, which we write as:
() 2l 1=1,...,700}; j =1,...,18,

J
At the j = 1,...,18 soundings, we define the bias,

700
bias; = > (2 (y") — 2 /700, (25)

=1
and the root-mean-squared prediction error,

700

1/2
rmspe; = {Z(i(yj(l)) - x§l))2/700} : (26)

=1

These are the true biases and root-mean-squared predictor errors, which we can
compute at the 18 location/seasons chosen for this experiment.

As was made clear in Section 4, for the full state vector there is a first-order
result based on a linearization of the forward model, and there is a second-order
result based on the delta method that gives (13) and (15). For XCO2, the nonlinear
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approximations to the bias and MSPE are easily obtained as follows: Now, XCO2=
w'x and XCO2= w’'x for known weight vector w. Then, using obvious notation,
the second-order result is:

bias(XCO2) = w'bias(x,); MSPE(XCO2) = w'MSPE(x,)w.  (27)
From Crisp et al. (2012), the ACOS/OCO-2 algorithm uses
bias(XCO2) = 0; MSPE(XCO02) = w'MSPE(X)w , (28)

which is a result of a linear approximation to the forward model. That is, in
ACOS/OCO-2’s error analysis, a zero bias is obtained, and the MSPE matrix is
evaluated at the retrieved state x.

For each of the j = 1,...,18 soundings, we can make a comparison of the
true bias, namely bias;, with bias; (= 0) and bias; (= bias(XC02;)). We can also
make a comparison of the true root-mean-squared prediction error, namely rmspe;,
with fmspe; (= {MSPE(XCO2;)}"/2) and fmspe; (= {MSPE(XCO02;)}!/?). These
comparisons are made through z-y plots, each of which contains 18 x-y pairs
corresponding to the 18 soundings.

In Figures 3 and 4, we show only the results for the aerosols case. The clear-
sky case (i.e., absence of aerosols) turns out to be less interesting because the
nonlinearities in the forward model are much less pronounced. Aerosols confound
the retrieval of XCO2 in a strongly nonlinear manner (O’Dell et al., 2012), so it
is appropriate that our comparisons focus on this case.

By comparing Fig. 3a with Fig. 3b, one can see the benefit of accounting for
the nonlinearity bias when the forward model has strong nonlinearities. Statistical
theory indicates that there will be very little difference in the root-mean-squared
prediction errors, and this is confirmed when comparing Figures 4a and 4b.

In our experiment, we have chosen a realistic set of atmospheres with aerosols
and have found that the true nonlinearity bias given by (25) is no more ex-
treme than £0.2 ppm. Similar experiments conducted on earlier versions of the
ACOS/OCO-2 algorithm showed much more serious biases on the order of +1
ppm and sometimes worse. The forward model that was behind the earlier ver-
sions was not effectively capturing the radiative transfer with more state elements
(as many as 112) that were highly correlated. As a consequence, the inverse prob-
lem was more ill-posed, and the retrieval error was more biased. Based on the
approach we have taken to assessing retrieval error, we have been able to quantify
an improvement in the ACOS/OCO-2 algorithm.
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Figure 3: In the presence of aerosols, biases are compared to the true bias. For
ACOS/OCO-2’s error analysis, which is based on a linear approximation, bias = 0
(Figure 3a). For the error analysis based on the delta method given in Section 4,

bias is plotted (Figure 3b). The horizontal axes in both plots show the true biases
obtained from the first moment of the estimation error; see (25) and (26).
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Figure 4: In the presence of aerosols, root-mean-squared prediction errors are
given for ACOS/OCO-2’s error analysis, tmspe (Figure 4a), and the error analysis
based on the delta method given in Section 4 (Figure 4b). The horizontal axes in
both plots show the true root-mean-squared prediction errors obtained from the
estimation error; see (25) and (26).
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6 Discussion and Conclusions

The OE approach to obtaining retrievals in remote sensing incorporates physical
knowledge, applied mathematics, and statistics. It is akin to the well known
approach in the signal-processing literature called state-space estimation, where
both the estimated state and the true state are random, and the error analysis goes
beyond a linear approximation (e.g., Shumway and Stoffer, 2006, Ch. 6). In this
article, we have shown how statistical theory (posterior analysis, delta method,
estimating equations) can be used to yield an uncertainty quantification (namely,
the first two moments) of the retrieval error, by recognizing the nonlinearity of
the forward model and all sources of randomness. The first two moments of the
retrieval error are fundamental quantities used for C'O; flux inversions from remote
sensing data.

The nonlinearity in the forward model results in a nonlinearity bias that is
estimated using a weighted estimate of the Hessian array; this approximation
improves as the signal-to-noise ratio increases (Cressie and Wang, 2013). Using
the ACOS/OCO-2 algorithm B5.0, XCO2 retrievals in a controlled experiment
(Section 2) exhibit absolute nonlinearity biases up to 0.2 ppm when aerosols are
present (Section 5). For clear-sky retrievals, biases are effectively zero.

Of course, there are other sources of bias, some known for physical reasons
and some described by regression relationships. Validation of the XCO2 product
is based on data from the Total Carbon Column Observing Network (TCCON)
(e.g., Wunch et al., 2011). In fact, a TCCON “ground truth” datum is also an
estimate of XCO2 derived from a different nonlinear forward model, and it has
its own nonlinearity bias. Our results in Section 5 indicate that under controlled
conditions the nonlinearity bias of XCO2 retrievals is within the limits of the error
characteristics of TCCON. In actual retrievals, bias can arise from a number of
components; our results indicate that the nonlinearity component by itself would
not be seen by an appropriate comparison to TCCON data.

The specification of a prior distribution (usually in the form of a prior mean
vector and a prior covariance matrix) for the unknown state is required for OE. The
robustness of the estimates and of the associated error analysis to misspecification
of the prior has not been addressed in this article. Our goal has been to work
within the assumptions of OE to obtain XCO2 estimates and their uncertainty
quantification that accounts for the nonlinearity in the forward model.
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