Adaptive reorganization of database structures through dynamic vertical partitioning of relational tables

Liu Zhenjie
University of Wollongong

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author.

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Adaptive Reorganization of Database Structures Through Dynamic Vertical Partitioning of Relational Tables

A thesis submitted in fulfillment of the requirements for the award of the degree

Master of Computer Science by Research

from

UNIVERSITY OF WOLLONGONG

by

Zhenjie Liu

School of Information Technology and Computer Science

October 2007
Dedicated to
My parents and wife Yanting
Declaration

This is to certify that the work reported in this thesis was done by the author, unless specified otherwise, and that no part of it has been submitted in a thesis to any other university or similar institution.

__
Zhenjie Liu
October 23, 2007
Zhenjie Liu and Janusz R. Getta. Optimization of query processing through
constrained vertical partitioning of relational tables. In DBA’06: Proceedings of the 24th
IASTED international conference on Database and applications, pages 221-227, Ana-
heim, CA, USA, 2006. ACTA Press.
Performance tuning of relational database systems is always a challenging task for database administrator. Automated performance tuning has been proposed recently as a new approach to detect and to eliminate performance problems and to support the decisions of database administrators.

This work considers one of the techniques used in automated performance tuning, dynamic vertical partitioning. Dynamic vertical partitioning of relational tables is one of the ways in which the physical structures of a relational database can be reorganised automatically in order to improve the performance of future database applications. The thesis presents how dynamic vertical partitioning can be used for the comprehensive analysis and optimisation of an adaptive reorganisation of database structures. In particular, we propose the algorithms to use to predict the future workload of the system, to analyse the characteristics of the workload, and to find a near optimal vertical partitioning of relational tables. Then, we discuss the implementation aspects of vertical partitioning with the materialized view and index-based techniques.

Our contributions to automated performance tuning of relational database systems can be summarised as follows:

1. Propose a cost model to perform a detailed analysis of the costs of query and data manipulation processing over a given configuration of a relational database;

2. Propose a new algorithm for vertical partitioning of relational schemas in a database system with a given level of redundancies for a given workload;

3. Discuss the limitations of static vertical partitioning and propose dynamical vertical partitioning;

4. Discuss the characteristics of workload in order to predict the future workloads of the system;
5. Implementation aspects of vertical partition discussion: materialized view based and index based;

6. Discussion of the implementation of a vertical partition as a virtual view;

7. Conduct experiments to confirm the correctness of the cost model used by the vertical partitioning algorithm and demonstrate the expected performance gains from the partitioning
Acknowledgements

The research work for this thesis was undertaken at the University of Wollongong. Firstly, I would like to thank my supervisor, Dr. Janusz R. Getta for his guidance and help in my research. Without him, this thesis would not have been possible. Also, I wish to acknowledge the support I have received from all the staff in the School of IT & CS, University of Wollongong. Finally, I would like to thank my family and friends for their enduring love and support.
Contents

Publications v
Abstract vi
Acknowledgements viii

1 Introduction 1
 1.1 Database Performance Tuning 1
 1.1.1 Overview of Automatic Database Administration 1
 1.1.2 Automatic Query Performance Tuning 2
 1.2 Partitioning .. 3
 1.2.1 Horizontal Partitioning 3
 1.2.2 Vertical Partitioning 5
 1.2.3 Comparison of Horizontal and Vertical partitioning 5
 1.3 The Challenge 6
 1.4 Strategy of Solution 7
 1.5 Thesis Organisation 7

2 Technical Backgrounds 9
 2.1 Autonomic Database Management Systems 9
 2.2 Automatic Performance Optimisation 11
 2.2.1 Performance Measurement Methodologies 11
 2.2.2 Automatic Performance Monitoring and Diagnosis 11
 2.2.3 Automatic Performance Tuning 12
 2.3 Dynamic Query Optimisation 13
 2.3.1 Query Execution Optimisation 13
 2.3.2 Physical database structure Reorganization 13
 2.4 Static Vertical Partitioning 14
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.1 Non-Overlapping Partitioning</td>
<td>14</td>
</tr>
<tr>
<td>2.4.2 Overlapping Partitioning</td>
<td>14</td>
</tr>
<tr>
<td>2.4.3 Finding interesting partitions</td>
<td>15</td>
</tr>
<tr>
<td>2.5 Dynamical Vertical Partitioning</td>
<td>16</td>
</tr>
<tr>
<td>2.5.1 Workload Monitoring and Analyzing</td>
<td>16</td>
</tr>
<tr>
<td>2.5.2 Implementing Vertical Partition</td>
<td>17</td>
</tr>
<tr>
<td>2.6 Summary</td>
<td>17</td>
</tr>
<tr>
<td>3 Static partitioning</td>
<td>18</td>
</tr>
<tr>
<td>3.1 Preliminaries</td>
<td>18</td>
</tr>
<tr>
<td>3.2 Cost Model</td>
<td>21</td>
</tr>
<tr>
<td>3.3 Partition Configuration</td>
<td>23</td>
</tr>
<tr>
<td>3.3.1 Algorithm overview</td>
<td>23</td>
</tr>
<tr>
<td>3.3.2 Choosing the partitions</td>
<td>24</td>
</tr>
<tr>
<td>3.3.3 Recycling of the original tables</td>
<td>25</td>
</tr>
<tr>
<td>3.3.4 Merging the partitions</td>
<td>26</td>
</tr>
<tr>
<td>3.4 Experiments</td>
<td>27</td>
</tr>
<tr>
<td>3.4.1 Evaluation of partitioning</td>
<td>27</td>
</tr>
<tr>
<td>3.4.2 Trend of Storage and Benefit</td>
<td>28</td>
</tr>
<tr>
<td>3.5 Summary and open problem</td>
<td>29</td>
</tr>
<tr>
<td>4 Dynamic Partitioning</td>
<td>31</td>
</tr>
<tr>
<td>4.1 Workload Patterns</td>
<td>31</td>
</tr>
<tr>
<td>4.2 Preliminaries</td>
<td>32</td>
</tr>
<tr>
<td>4.3 Cost Model</td>
<td>35</td>
</tr>
<tr>
<td>4.4 Overview of Dynamic Partitioning Algorithm</td>
<td>35</td>
</tr>
<tr>
<td>4.5 Potential Low Workload Time Detecting</td>
<td>37</td>
</tr>
<tr>
<td>4.6 Finding Most Similar Workload</td>
<td>38</td>
</tr>
<tr>
<td>4.6.1 Function to calculate similarity of two signatures</td>
<td>38</td>
</tr>
<tr>
<td>4.6.2 Most Similar Workload Searching</td>
<td>39</td>
</tr>
<tr>
<td>4.7 Finding configuration</td>
<td>39</td>
</tr>
<tr>
<td>4.7.1 Choosing partitions</td>
<td>39</td>
</tr>
<tr>
<td>4.8 Merging the partitions</td>
<td>41</td>
</tr>
<tr>
<td>4.9 Partition Implementation</td>
<td>41</td>
</tr>
<tr>
<td>4.10 Comparison between Static and Dynamic partitioning</td>
<td>42</td>
</tr>
<tr>
<td>4.11 Summary</td>
<td>42</td>
</tr>
</tbody>
</table>
5 Implementation of Dynamic Vertical Partitioning

5.1 Issues of implementing partitions

5.1.1 Materialized View-based Implementation

5.1.2 Index based Implementation

5.2 Comparison of Index-based and Materialized view-based

5.2.1 Consistency Control Comparison

5.2.2 Storage Cost Comparison

5.2.3 Comparison by Time Cost

5.3 Open problems

5.4 Experiments

5.4.1 Query Rewrite of Materialized View

5.4.2 Fast Full Index Scan

5.4.3 Comparison of Materialized View and Index

5.4.4 View Update

5.5 Summary

6 Conclusions and Future work

6.1 Conclusions

6.2 Future work

Bibliography
List of Tables
List of Figures

1.1 Principle of horizontal partitioning ... 4
1.2 Principle of vertical partitioning ... 6
3.1 Outline of algorithms ... 24
3.2 Storage and performance .. 28
3.3 Performance comparison .. 28
4.1 Total workload ... 33
4.2 Example of session and signature ... 34
4.3 Workload before dynamic partitioning 36
4.4 Workload after dynamic partitioning 36
4.5 Overview of dynamic partitioning 37
5.1 Example of Materialized View ... 46
5.2 Horizontal traversal of index .. 47
5.3 Query Rewrite of Materialized View 52
5.4 Fast Full Index Scan ... 52
5.5 Comparison of MV and Index .. 53
5.6 View Update ... 54