Studies on the biomass, diversity and nutrient relationships of macroalgae and seagrasses in Lake Illawarra, New South Wales, Australia

Karin Rutten
University of Wollongong
NOTE
This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING
You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Studies on the biomass, diversity and nutrient relationships of macroalgae and seagrasses in Lake Illawarra, New South Wales, Australia

A thesis submitted in fulfillment of the requirements for the award of the degree

DOCTOR OF PHILOSOPHY

from

UNIVERSITY OF WOLLONGONG

by

KARIN RUTTEN

SCHOOL OF EARTH AND ENVIRONMENTAL SCIENCES

- 2007 -
Thesis Declaration

I, Karin Rutten, declare that this thesis, submitted in fulfillment of the requirements for the award of Doctor of Philosophy, in the School of Earth and Environmental Sciences, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other institution.

Karin Rutten
Table of Contents

Thesis Declaration ... II
Table of Contents .. III
List of Figures .. VII
List of Tables ... X
List of Plates .. XIV
Abstract .. XVI
Publications arising to date from this study XVIII
Acknowledgements .. XVIII

CHAPTER 1 Introduction .. 1

1.1 General Introduction .. 1
1.2 Statement of the Problem ... 2
1.3 Thesis Aims and Objectives .. 3
1.4 Thesis Outline ... 3
1.5 Study Site - Lake Illawarra .. 4
 1.5.1 Site Description ... 4
 1.5.2 Catchment Land Use ... 4
 1.5.3 Climate ... 6
 1.5.4 Lake Entrance Conditions ... 7
 1.5.5 Nutrient Enrichment ... 8
 1.5.6 Macroalgal Blooms .. 11
 1.5.7 Macroalgal Harvesting .. 12
1.6 Summary ... 13

CHAPTER 2 Literature Review .. 14

2.1 Introduction ... 14
2.2 Ecology of Aquatic Macrophytes .. 15
 2.2.1 Seagrasses ... 16
 2.2.2 Macroalgae ... 18
 2.2.3 Macrophyte Biomass .. 20
 2.2.4 Environmental Limitations on Macrophyte Growth 21
2.3 Photosynthesis in Aquatic Macrophytes 23
 2.3.1 Availability of Light ... 24
 2.3.2 Carbon ... 27
2.4 Nutrients ... 30
 2.4.1 Nutrients Required by Macrophytes 31
 2.4.2 The Phosphorus Cycle ... 32
 2.4.3 The Nitrogen Cycle .. 34
2.5 Nutrient Uptake by Macrophytes ... 36
 2.5.1 Phosphorus Uptake .. 37
 2.5.2 Nitrogen Uptake ... 37
 2.5.3 Growth of Macroalgae in Culture 38
 2.5.4 Nutrient Uptake Kinetics .. 39
 2.5.5 Nutrient Limitation ... 43
 2.5.6 Nutrient Uptake from Sediment 44
 2.5.7 Factors Affecting Nutrient Uptake 45
2.6 Macrophyte Tissue Nutrient Concentrations 46
 2.6.1 Effect of Nutrient Enrichment 51
CHAPTER 3 Materials and Methods ... 60

3.1 Introduction .. 60

3.2 Methodology used for the Studies of Macrophyte Biomass, Distribution and Diversity in Lake Illawarra ... 60
 3.2.1 Site Selection ... 60
 3.2.2 Sample Collection and Preservation .. 61
 3.2.3 Macrophyte Sample Preparation .. 63
 3.2.4 Identification of Macrophytes ... 63
 3.2.5 Sediment Sample Preparation ... 64
 3.2.6 External Laboratory Analysis and Quality Control Samples 64
 3.2.7 Statistical Analyses .. 66

3.3 Methodology used for the Experimental Growth in Culture of Chaetomorpha linum 67
 3.3.1 Sample Collection .. 67
 3.3.2 Preconditioning and Culture Media ... 67
 3.3.3 Media Preparation .. 69
 3.3.4 Experimental Apparatus ... 70
 3.3.5 Preparation of Plant Material ... 70
 3.3.6 Experimental Design .. 71
 3.3.7 Calculations and Statistics ... 73

CHAPTER 4 Description and Ecology of Shallow Benthic Macrophytes in Lake Illawarra, New South Wales ... 75

4.1 Introduction .. 75

4.2 Literature Review of Macrophyte Distribution and Biomass in Lake Illawarra 75
 4.2.1 Seagrass Distribution ... 75
 4.2.2 Factors Limiting Seagrass Distribution in Lake Illawarra 82
 4.2.3 Seagrass Biomass .. 83
 4.2.4 Seagrass Condition ... 83
 4.2.5 Distribution of Macroalgae in Lake Illawarra 85
 4.2.6 Macroalgal Biomass - Historical Overview 86

4.3 Results and Discussion: Description, Taxonomy and Ecology of Lake Illawarra Macrophytes ... 88
 4.3.1 Introduction ... 88

4.4 Results and Discussion (I): Description of Seagrasses in Lake Illawarra 91
 4.4.1 Genus Halophila Thouars 1806 ... 91
 4.4.2 Genus Ruppia Linnaeus 1753 ... 93
 4.4.3 Genus Zostera Linnaeus 1753 ... 94

4.5 Results and Discussion (II): Description of Green Macroalgae (Chlorophyta) in Lake Illawarra .. 98
 4.5.1 Genus Ulva Linnaeus 1753 ... 98
 4.5.2 Genus Gayralia K.L. Vinogradova 1969 ... 102
 4.5.3 Genus Rhizoclonium Kützing 1843 ... 102
 4.5.4 Genus Chaetomorpha Kützing 1845 .. 103
 4.5.5 Genus Cladophora Kützing 1843 .. 105
 4.5.6 Genus Codium Stackhouse 1797 ... 106
 4.5.7 Genus Bryopsis Lamouroux 1809 ... 107
 4.5.8 Genus Lamprothamnium Groves 1916 ... 107

4.6 Results and Discussion (III): Description of Brown Macroalgae (Phaeophyta) in Lake Illawarra .. 114
4.6.1 Genus *Ectocarpus* Lyngbye 1819 .. 114
4.6.2 Genus *Hincksea* Gray 1864 ... 115
4.6.3 Genus *Scytophomonas* Agardh 1820 .. 115
4.6.4 Genus *Petalonaria* Derbes and Solier 1850 115
4.6.5 Genus *Colpomenia* (Endlicher) Derbes et Solier 1851 116
4.6.6 Genus *Cystoseira* Agardh 1820 .. 116
4.6.7 Genus *Sargassum* Agardh 1820 ... 116
4.6.8 Genus *Homosira* (Endlicher) Meneghini 1838 117
4.6.9 Genus *Ecklonia* Hornemann 1828 ... 117
4.6.10 Genus *Phyllospora* Agardh 1839 ... 118

4.7 Results and Discussion (IV): Description of Red Macroalgae (Rhodophyta) in Lake Illawarra ... 122
4.7.1 Genus *Hypnea* Lamouroux 1813 ... 122
4.7.2 Genus *Gracilaria* Greville 1830 .. 123
4.7.3 Genus *Spyridia* Harvey 1833 .. 124
4.7.4 Genus *Ceramium* Roth 1797 ... 124
4.7.5 Genus *Centroceras* Kützing 1841 ... 125
4.7.6 Genus *Polysiphonia* Greville 1823 ... 125
4.7.7 Genus *Chondria* Agardh 1817 .. 126
4.7.8 Genus *Grateloupa* Agardh 1822 .. 127

4.8 Conclusions.. 132

CHAPTER 5 Studies on seagrass and macroalgal biomass and nutrients (carbon, nitrogen and phosphorus) in Lake Illawarra .. 133

5.1 Introduction .. 133

5.2 Results (I): Seagrass and Macroalgal Biomass 134
5.2.1 Biomass of Seagrasses (Zostera and Ruppia) 134
5.2.2 Biomass of Macroalgae .. 138
5.2.3 Dry Matter Contents of Macrophytes .. 145

5.3 Results (II): Nutrient Analyses .. 146
5.3.1 Summary of Data and Statistical Analyses 146
5.3.2 Variations between Seagrass Leaves and Rhizomes 154
5.3.3 Intra-Spatial Variations in Nutrient and Isotopic Contents 154
5.3.4 Inter-Spatial Variations in Nutrient and Isotopic Contents 159
5.3.5 Temporal Variations in Nutrient and Isotopic Contents 166
5.3.6 C:N:P Molar Ratios - Spatial and Temporal Variations 168
5.3.7 Macrophyte Nutrient Pools ... 171
5.3.8 Sediment Grain Size and Nutrient Analyses 173
5.3.9 Macrophyte Biomass, Nutrient and Sediment Correlations 177
5.3.10 Foreshore Cleanups .. 182

5.4 Discussion of Results .. 183
5.4.1 Biomass of Seagrass ... 183
5.4.2 Biomass of Macroalgae .. 184
5.4.3 C, N and P Contents of Seagrasses and Macroalgae 186
5.4.4 Nutrient Limitation of Macrophytes .. 191
5.4.5 Stable Isotopes of C and N .. 198
5.4.6 Role of Macrophytes in Lake Illawarra Nutrient Budget 201
5.4.7 Conclusion .. 204

CHAPTER 6 Influence of nitrogen, phosphorus and temperature on growth of *Chaetomorpha linum* ... 205

6.1 Introduction .. 205

6.2 Experimental Results ... 207
6.2.1 Pilot Study (initial biomass comparison) ... 207
6.2.2 Pilot Study (N-source) ... 209
6.2.3 Effect of Mixing ... 211
6.2.4 Effect of Phosphorus (Phosphate-P) ... 214
6.2.5 Effect of Nitrogen (Nitrate-N and Ammonium-N) .. 218
6.2.6 Effect of Temperature ... 221
6.2.7 Dry Matter Contents .. 226

6.3 Discussion of Results .. 229
6.3.1 Experimental Optima ... 230
6.3.2 Effect of Phosphorus Enrichment .. 230
6.3.3 Effect of Nitrogen Enrichment ... 231
6.3.4 Variation in Response to Nitrate and Ammonium ... 234
6.3.5 Comparison to Previous Studies on Macroalgae .. 236
6.3.6 Effect of Temperature on Growth ... 237
6.3.7 Conclusions ... 241

CHAPTER 7 Conclusions and Recommendations ...243

7.1 Conclusions ...243
7.1.1 Description of Macrophytes in Lake Illawarra ... 243
7.1.2 Biomass of Seagrasses and Macroalgae ... 243
7.1.3 Nutrient Analyses of Macrophyte Tissue .. 245
7.1.4 Nutrient Limitation of Macrophytes ... 246
7.1.5 Macrophyte Nutrient Pools .. 247
7.1.6 $\delta^{13}C$ and $\delta^{15}N$ Contents of Macrophytes 250
7.1.7 Response of *C. linum* to Nutrient Enrichment and Temperature 251

7.2 Recommendations for Future Work ..252

7.3 Summary ...255

CHAPTER 8 References ..256

APPENDICES ...282

Appendix 1: Additional photographs of sampling sites and experimental apparatus.282
Appendix 2: Glossary of taxonomic terms used in Chapter 4...286
Appendix 3: Water quality parameters at four Lake Illawarra seagrass sites, 2000 - 2002 ...289
Appendix 4: Wet weight biomass of macrophytes at six sites, Lake Illawarra, 2000 - 2002 ...290
Appendix 5: Wet to dry biomass ratios of *Zostera capricorni* and *Ruppia megacarpa* at four Lake Illawarra sites, 2000 - 2002 ... 291
Appendix 6: Tissue nutrient analyses of macrophyte samples, Lake Illawarra, 2000-02 ...292
Appendix 7: Nutrient analyses of sediment samples collected at seagrass sites, Lake Illawarra, 2000 - 2002 ...296
List of Figures

Figure 1-1: Location of Lake Illawarra, showing contour lines, major watercourses and catchment boundary (GIS data obtained from Geoscience Australia, 2003)..........................5
Figure 1-2: Land use in the Lake Illawarra catchment (GIS data obtained from Geoscience Australia, 2003)..5
Figure 1-3: Annual rainfall recorded at Albion Park (data from Bureau of Meteorology, 2007)...7
Figure 1-4: Average monthly rainfall and temperatures recorded at Port Kembla, 1960 - 2003 (data from Bureau of Meteorology, 2004)..7
Figure 1-5: Concentrations of dissolved inorganic nitrogen and phosphorus in the water column, Lake Illawarra, 12/96 - 9/00 (Site LI5A: Pacific Power, pers. comm., 2004), 10/00 - 6/01 (Site 4: LIA, pers. comm., 2001) and 05/05 - 01/07 (Bevans Island: LIA, pers. comm., 2007)..11
Figure 2-1: The phosphorus cycle in ocean waters (after Kennish, 1997).33
Figure 2-2: The nitrogen cycle in ocean waters (after Kennish, 1997).....................................34
Figure 2-3: Summary of nitrogen uptake and assimilation within a eukaryotic algal cell (after Lobban and Harrison, 1997)..38
Figure 2-4: Typical pattern of growth in macroalgae (after Lobban and Harrison, 1997)........38
Figure 2-5: (A) Graphical representation of a reaction obeying the Michaelis-Menten equation. (B-D) Linear transformations of the Michaelis-Menten equation: (B) v against v/a, often referred to as the Eadie-Hofstee plot; (C) a/v against a, or the Hanes plot; (D) 1/v against 1/a, commonly referred to as the Lineweaver-Burk plot (adapted from Cornish-Bowden, 1995). ...40
Figure 2-6: Comparison between the theoretical limitation models of plant growth response to increasing nutrient supply (after Rubio et al., 2003)..43
Figure 3-1: Sites used for seagrass and macroalgae biomass sampling (Chapter 5), and additional sites used for general ecological surveys of macroalgae (Chapter 4), Lake Illawarra, 2000 - 2003..61
Figure 4-1: Sites used by King et al. (1990), King et al. (1997) and WBM (2000) to determine seagrass distribution and biomass...76
Figure 4-2: Seagrass distribution in Lake Illawarra, March 1987 (adapted from King, 1988)...79
Figure 4-3: Seagrass distribution in Lake Illawarra, January 2000 (adapted from WBM, 2000)...80
Figure 4-4: Seagrass distribution in Lake Illawarra, May - June 2003 (after White, 2003).....81
Figure 4-5: Lake Illawarra, showing areas where nuisance macroalgal blooms are likely to occur. Seagrass distribution is adapted from WBM Oceonics (2000); macroalgal distribution is adapted from Harris (1977), King et al. (1990) and the present study..87
Figure 4-6: Seasonal variations in macroalgal biomass recorded at three Lake Illawarra sites by Yassini and Clarke (1986). ..88
Figure 5-1: Seasonal variation in total macrophyte biomass (seagrass leaves, rhizomes, leaf litter and macroalgae) at the Oasis Caravan Park and Nicolle Road sites, Lake Illawarra. ...135
Figure 5-2: Seasonal variation in total macrophyte biomass (seagrass leaves, rhizomes, leaf litter and macroalgae) at the Purry Burry Point and Mullet Creek sites, Lake Illawarra. ..136
Figure 5-3: Spatial variations in C, N and P (% dry weight) concentrations of seagrasses (leaves and roots-rhizomes) at four Lake Illawarra sites (values are mean ± standard error). ...161

Figure 5-4: Spatial variations in $\delta^{13}C$ and $\delta^{15}N$ (‰) contents of seagrasses (leaves and roots-rhizomes) at four Lake Illawarra sites (values are mean ± standard error).................163

Figure 5-5: Scatter plots comparing $\delta^{15}N$ to $\delta^{13}C$ contents of seagrasses (leaves only) and macroalgae at Lake Illawarra Village (LIV), Oasis Caravan Park (OCP), Nicolle Road (NIC), Purry Burry Point (PBP), Primbee Bay (PRIM) and Mullet Creek (MC). All macroalgae, except those circled, are Chaetomorpha spp. ..165

Figure 5-6: Spatial variations in molar C/P, C/N and N/P ratios of seagrasses (leaves and roots-rhizomes) at four Lake Illawarra sites (values are mean ± standard error).169

Figure 5-7: Scatter plots comparing the relationships between total P and N concentrations and C/P, C/N and N/P ratios of seagrasses (leaves and rhizomes) and macroalgae at Lake Illawarra, spring 2000 - winter 2002.................................171

Figure 5-8: Seasonal and spatial variations in total N and P contents of seagrass beds (leaves and roots-rhizomes combined), at four Lake Illawarra sites (values are mean ± s.e.). ...172

Figure 5-9: Percentage (average) grain size content of sediment (top 0 - 10 cm) collected from Lake Illawarra sampling sites, spring 2000 - winter 2002 ...175

Figure 5-10: C, N and P contents, C/N molar ratios, $\delta^{13}C$ and $\delta^{15}N$ contents of sediment (top 0 - 10 cm) at five Lake Illawarra sites, 2000 (spring) - 2002 (winter) (values are mean ± s.e.). Note: several sediment samples collected from NIC and OCP (spring 2000 - summer 2001) did not contain sufficient N for isotopic analysis. ...176

Figure 5-11: Scatter plots comparing the isotopic contents (‰) of seagrass leaves and rhizomes, and the underlying sediment at four sites, Lake Illawarra, spring 2000 - winter 2002. ...180

Figure 5-12: Frequency distribution of carbon, nitrogen and phosphorus contents of seagrasses (leaves and rhizomes; n = 99) and macroalgae (n = 63) in Lake Illawarra, 2000 - 2002. Red lines indicate critical concentrations of tissue N and P (see text for further details). ...193

Figure 6-1: Pilot study comparing Chaetomorpha linum initial biomasses, conducted on a sunny windowsill for 7 weeks (mid-summer), with 30 μmol P L$^{-1}$ and 70 μmol NH$_4$NO$_3$ L$^{-1}$ added every 3 days for the first 3 weeks. Results are presented as the natural log of biomass (g WW L$^{-1}$) versus time...208

Figure 6-2: Preliminary nitrate-N versus ammonium-N windowsill experiment, using 30 μmol P L$^{-1}$ d$^{-1}$ and 100 μmol N L$^{-1}$ d$^{-1}$ as either NO$_3^-$ or NH$_4^+$ for 4 weeks. Results are presented as biomass versus time (A) and yield versus time (B). Values are mean ± standard error. ..210

Figure 6-3: Biomass (wet weight) of C. linum (field collected) after 7 and 14 days of incubation at 15°C, with or without mixing by aquarium bubblers. ...211

Figure 6-4: Relative growth rates (dry weight) of C. linum after 7 days of incubation at 20°C and a range of P concentrations with 100 μmol N L$^{-1}$ d$^{-1}$ (as NH$_4$NO$_3$) ...214

Figure 6-5: Biomass (wet weight) of C. linum after 7 and 14 days of incubation at 15, 20 and 25°C, with variable P and 100 μmol N L$^{-1}$ d$^{-1}$ (as NH$_4$NO$_3$, except for the unenriched treatments). ...215

Figure 6-6: Biomass (wet weight) of C. linum after 7 and 14 days of incubation at 15°C, with 20 μmol P L$^{-1}$ d$^{-1}$ and nitrogen as NO$_3^-$-N or NH$_4^+$-N (except for the unenriched treatment). ...218

Figure 6-7: Biomass (wet weight) of C. linum after 7 and 14 days of incubation at 25°C, with variable nitrate-N and 20 μmol P L$^{-1}$ d$^{-1}$ (except for the unenriched treatment) (values are mean ± standard error). ...220
Figure 6-8: Biomass (wet weight) of *C. linum* after 14 days incubation at 10 - 30°C, under a range of nutrient treatments (C = unenriched control treatment).

Figure 6-9: Relative growth rates (dry weight) of *C. linum* after 14 days of incubation at 10 - 30°C.

Figure 6-10: Final dry matter content of *C. linum* after 14 days of treatment at 10 - 30°C.

Figure 6-11: Dry matter contents of *Chaetomorpha linum* collected from Lake Illawarra, spring 2000 - winter 2002. Dashed line is the average dry matter content (after 14 days) of *C. linum* undergoing nitrogen deprivation in laboratory culture.

Figure 7-1: Averaged annual biomass (dry weight) and nutrient (total N and P) budgets for Lake Illawarra (see text for further details).
List of Tables

Table 1-1: Land use in the Lake Illawarra catchment (after Depers et al., 1994)6
Table 1-2: Average water quality parameters (A) and nutrient concentrations (B) recorded in Lake Illawarra, between 1976 and 2007 (values are mean, with range given in parentheses) ...10
Table 2-1: Dry weight biomass and daily production of seagrasses (values are mean ± s.e., where given) ... 21
Table 2-2: Average biomass (dry weight) and calculated rates of daily carbon production for seagrasses and macroalgae ..30
Table 2-3: Average concentrations of some essential elements in seawater (after Brown et al., 1989) ..32
Table 2-4: Functions and compounds of essential elements in macroalgae (Lobban and Harrison, 1997) ..33
Table 2-5: Range of kinetic parameters, V_{max} (μmol (N or P) g$^{-1}$ dry weight hr$^{-1}$) and K_m (μmol N or P) for phosphate, ammonium and nitrate uptake for selected species of macroalgae (values are mean ± s.e.) .. 42
Table 2-6: Critical tissue nitrogen and phosphorus concentrations (% dry weight) for the growth of aquatic macrophytes ..48
Table 2-7: Concentrations of carbon, nitrogen and phosphorus (% dry weight) in seagrasses growing under natural conditions (values are mean ± s.e., where given, with range in parentheses) .. 49
Table 2-8: Concentrations of carbon, nitrogen and phosphorus (% dry weight) in macroalgae growing under natural conditions (values are mean ± s.e., where given, with range in parentheses) .. 50
Table 2-9: C:N:P atomic ratios of selected macroalgae and seagrasses growing under natural conditions (values are mean, with range given in parentheses) 54
Table 2-10: Isotopic composition of macroalgae and seagrasses (values are mean, with range given in parentheses) .. 56
Table 3-1: Analytical results for the standard reference material (NIST 1515, Apple Leaves), macrophyte tissue ($Ulva$ sp.) and sediment quality control samples included with each external laboratory analysis (values are mean ± s.e.) .. 65
Table 3-2: Algal culture media described by previous authors (aLavery and McComb (1991b); bVon Stosch (1963), cited in McLachlan 1973; cVon Stosch medium without N or P was used by Taylor et al. (2001) for Chaetomorpha linum culture; dProvasoli (1968), cited in McLachlan (1973); eGordon et al., (1981), adapted from Provasoli (1964)). .. 68
Table 3-3: Enriched seawater medium and preparation of working stock solutions used in preconditioning and culture experiments. Note that nitrogen and phosphorus were added separately for each experiment .. 69
Table 4-1: Total area of seagrass beds in Lake Illawarra, 1976 - 200377
Table 4-2: Total biomass of seagrass (leaves, roots, rhizomes and detritus) recorded by King et al. (1990: wet weight) and King et al. (1997: dry weight) .. 84
Table 4-3: Biomass of Zostera leaves recorded by WBM (1996b, 1998, 2000), White (2003) and the present study (refer to Chapter 5). Values are mean ± s.e., where given. .. 84
Table 4-4: Summary of Zostera condition data at selected sites in Lake Illawarra (after WBM, 1993, 1996b, 1998, 2000; White, 2003). Values are mean (standard error not provided) .. 85
Table 4-5: Average biomass of macroalgae recorded by King et al. (1990, wet weight) and King et al. (1997, dry weight).

Table 4-6: Synopsis of orders, families and genera of macrophytes found in Lake Illawarra, between winter 2000 and winter 2003 (current classification verified via Guiry, 2007).

Table 5-1: Summary of multivariate ANOVA testing for differences in biomass of macrophytes collected from OCP, NIC, PBP, MC, spring 2000 - winter 2002.

Table 5-2: Macrophyte biomass (dry weight) and species content recorded at four Lake Illawarra sites, spring 2000 (mean ± s.e.).

Table 5-3: Macrophyte biomass (dry weight) and species content recorded at four Lake Illawarra sites, summer 2001 (mean ± s.e.).

Table 5-4: Macrophyte biomass (dry weight) and species content recorded at four Lake Illawarra sites, winter 2001 (mean ± s.e.).

Table 5-5: Macrophyte biomass (dry weight) and species content recorded at four Lake Illawarra sites, summer 2002 (mean ± s.e.).

Table 5-6: Macrophyte biomass (dry weight) and species content recorded at four Lake Illawarra sites, winter 2002 (mean ± s.e.).

Table 5-7: Dry matter contents of seagrasses and macroalgae, determined for all samples collected across all Lake Illawarra sites.

Table 5-8: Tissue contents of seagrass leaves, roots-rhizomes and macroalgae at the Lake Illawarra Village (LIV), Oasis Caravan Park (OCP), Nicolle Road (NIC), Purry Burry Point (PBP), Primbee Bay (PRIM) and Mullet Creek (MC) sites, Lake Illawarra, spring 2000 (values are mean ± s.e., n = 3 - 6).

Table 5-9: Tissue contents of seagrass leaves, roots-rhizomes and macroalgae at the Oasis Caravan Park (OCP), Nicolle Road (NIC), Purry Burry Point (PBP) and Prummy Creek (MC) sites, Lake Illawarra, summer - winter 2001 (values are mean ± s.e., n = 3 - 6).

Table 5-10: Tissue contents of seagrass leaves, roots-rhizomes and macroalgae at the Oasis Caravan Park (OCP), Nicolle Road (NIC), Prurry Burry Point (PBP), Prumsbee Bay (PRIM) and Mullet Creek (MC) sites, Lake Illawarra, summer - winter 2002 (values are mean ± s.e., n = 3-6).

Table 5-11: Summary of two-way ANOVA testing for differences in elemental and isotopic contents of seagrass leaves collected from the OCP, NIC, PBP and MC sites, spring 2000 - winter 2002 (n = 99).

Table 5-12: Summary of two-way ANOVA testing for differences in elemental and isotopic contents of seagrass rhizomes collected from the OCP, NIC, PBP and MC sites, spring 2000 - winter 2002 (n = 99).

Table 5-13: Summary of one-way ANOVA testing for differences in elemental and isotopic contents of seagrasses and macroalgae collected from OCP, NIC, PBP, MC, spring 2000 - winter 2002. F-ratios shown, with test significant at: *p < 0.05; **p < 0.01; ***p < 0.001.

Table 5-14: Summary of paired-t testing for differences in C, N, P and isotopic contents of seagrass leaves and their respective roots-rhizomes, sampled at the Oasis Caravan Park (OCP), Nicolle Road (NIC), Purry Burry Point (PBP), Primbee Bay (PRIM) and Mullet Creek (MC) sites. T-values shown, with test significant at: *p < 0.05; **p < 0.01; ***p < 0.001.

Table 5-15: Summary of one-way ANOVA testing for differences in C, N, P and isotopic contents of seagrass leaves and macroalgae sampled at the Oasis Caravan Park (OCP), spring 2000 – winter 2002.
Table 5-16: Summary of one-way ANOVA testing for differences in C, N, P and isotopic contents of seagrass leaves and macroalgae sampled at Nicolle Road (NIC), Purry Burry Point (PBP), Primbee Bay (PRIM) and Mullet Creek (MC) ...157

Table 5-17: Seasonal variations in biomass (dry weight) and nutrient contents of *Chaetomorpha* spp. at the Oasis Caravan Park (OCP), Nicolle Road (NIC), Purry Burry Point (PBP), Primbee Bay (PRIM) and Mullet Creek (MC) sites, Lake Illawarra (values are mean ± s.e.). ...173

Table 5-18: Averaged total biomass and nitrogen and phosphorus contents of macroalgae at the seagrass and inshore areas of four sites, Lake Illawarra (values are mean ± s.e.). ..173

Table 5-19: Summary of ANOVA testing for differences in nutrient and isotopic contents of sediment collected from seagrass beds at OCP, NIC, PBP, MC, spring 2000 - winter 2002. ..177

Table 5-20: Spearman-rank correlation matrix between biomass (dry weight) and nutrient concentrations of seagrass leaves (A), rhizomes (B) and leaves versus rhizomes (C), collected from four sites (OCP, NIC, PBP and MC) (n = 102). Significant correlations are highlighted in bold. ...178

Table 5-21: Spearman-rank correlation matrix between biomass (dry weight) and nutrient concentrations of seagrass leaves, rhizomes and the underlying sediment, collected from four sites (OCP, NIC, PBP and MC), Lake Illawarra (n = 99). Significant correlations are highlighted in bold. ...179

Table 5-22: Pearson’s correlation matrix between biomass (dry weight) and nutrient concentrations of macroalgae, collected from four sites (OCP, NIC, PBP and MC), Lake Illawarra (n = 63). Significant correlations are highlighted in bold. ...181

Table 5-23: Average content of foreshore cleanup material removed from the Windang Peninsula, 2000 - 2001 (values are means ± standard error). ...182

Table 5-24: Average C, N and P concentrations and C:N:P molar ratios of dominant macrophytes, determined for all samples collected across six Lake Illawarra sites (mean ± s.e.). ...187

Table 5-25: Comparison between the estimated pools of nitrogen and phosphorus associated with macrophytes, water and sediment in Lake Illawarra (area = 35 km²) ..203

Table 6-1: Results of ANOVA tests comparing relative growth rates of *Chaetomorpha linum* during nutrient enrichment and the succeeding unenriched phase, using initial biomasses (IM) of 1 g L⁻¹ or 2 g L⁻¹. ...209

Table 6-2: Summary of ANOVA tests for the hypothesis of no significant differences in relative growth rates between nitrate-N or ammonium-N treatments. ...211

Table 6-3: Relative growth rates of *C. linum* after 7 and 14 days of incubation at 15°C, with or without mixing by aquarium bubblers (values are mean ± standard error). ...212

Table 6-4: Summary of ANOVA testing for the hypothesis of no significant differences between relative growth rates (dry weight) after 14 days, using variable nutrient treatments in Mixed and Unmixed beakers. ...212

Table 6-5: Summary of ANOVA testing for the hypothesis of no significant differences in dry matter contents after 14 days, using variable nutrient treatments in Mixed and Unmixed beakers. ...213

Table 6-6: Relative growth rates and dry matter content for *C. linum* after 14 days of incubation at 15, 20 and 25°C, and treatment with 100 μmol N L⁻¹ d⁻¹ (as NH₄NO₃) and 0 - 100 μmol L⁻¹ d⁻¹ of PO₄³⁻-P (values are mean ± standard error). ...216

Table 6-7: Results of ANOVA tests for the hypothesis of no significant differences between relative growth rates or dry matter contents after 14 days, using variable concentrations of P (μmol P L⁻¹ d⁻¹), at 15, 20 and 25°C. ...217
Table 6-8: Relative growth rates of *C. linum* during 2 weeks incubation at 15°C and treatment with either nitrate-N or ammonium-N. All treatments, other than the unenriched treatment, received 20 μmol P L⁻¹ d⁻¹ (values are mean ± standard error).

Table 6-9: Results of ANOVA tests for the hypothesis of no significant differences between relative growth rates (dry weight) or dry matter contents after 14 days, using variable concentrations of nitrate-N or ammonium-N (μmol N L⁻¹ d⁻¹).

Table 6-10: Relative growth rates of *C. linum* during 2 weeks incubation at 25°C and treatment with nitrate-N. All treatments, other than the unenriched treatment, received 20 μmol P L⁻¹ d⁻¹ (values are mean ± standard error).

Table 6-11: Results of Repeated Measures ANOVA tests for the hypothesis of no significant differences between relative growth rates (dry weight) or dry matter contents of *C. linum* after 14 days, using variable concentrations of nitrate-N (0 - 1000 μmol N L⁻¹ d⁻¹).

Table 6-12: Summary of ANOVA tests for the hypothesis of no significant differences between relative growth rates (dry weight) of *C. linum* after 14 days of laboratory culture at 10 - 30°C.

Table 6-13: Summary of ANOVA tests comparing the effect of temperature (10 - 30°C) and variable nutrient treatments on dry matter contents of *C. linum*.

Table 6-14: Conditions found to promote the highest relative growth rates (% d⁻¹) for green macroalgae in laboratory culture.

Table 6-15: Relative growth rates (RGR) of macroalgae under various culture conditions.

Table 6-16: Comparison between dry weight growth rates of *Chaetomorpha linum* recorded by Menéndez *et al.* (2002b) and the present study.
List of Plates

Plate 4-1: *Halophila ovalis* (PBP, 26/8/01). (A) Typical habit of fertile plant, showing flower with three stigmas. Scale = 1 cm. (B) Average leaf. Scale = 5 mm. (C) Leaf showing glabrous surface and entire margin. Scale = 200 μm. ...96

Plate 4-2: *Halophila decipiens* (NIC, 3/3/02). (A) Habit of fertile plant. Scale = 1 cm. (B) Typical leaf. Scale = 3 mm. (C) Serrulate leaf margin. Scale = 200 μm.96

Plate 4-3: *Ruppia megacarpa* (OCP, 3/4/01). (A) Habit of plant. Scale = 5 cm. (B) Leaf tips. Scale = 5 mm. (C) Rhizome. Scale = 5 mm. (D) Flower. Scale = 1 cm....................97

Plate 4-4: *Zostera capricorni*. (A) Habit of plant (Yallah Bay, 8/7/01). Scale = 5 cm. (B) Range of leaf tips exhibited on plants from a single area (PBP, 3/2/01). Scale = 5 mm. (C) Rhizome (Yallah Bay, 8/7/01). Scale = 1 cm. (D) Spadix (Purrah Bay, 25/11/00). Scale = 5 mm...97

Plate 4-5: (A-D) *Ulva* sp. (Yallah Bay, 23/1/01), tentatively referred to *U. lactuca*. (A) Habit. Scale = 2 cm. (B) Surface view of cells. Scale = 20 μm. (C) Thallus margin with spines. Scale = 200 μm. (D) Cross-section through mid-thallus (aniline blue-stained). Scale = 50 μm. (E-F) *Ulva* sp. (Tuggerah Bay, 3/9/01), tentatively referred to *U. fasciata*. (E) Habit of dried plant. Scale = 1 cm. (F) Surface view of cells (aniline blue-stained). Scale = 20 μm. ..108

Plate 4-6: *Ulva intestinalis* (Yallah Bay, 8/7/01). (A) Habit. Scale = 5 cm. (B-C) Surface view of cells (aniline blue-stained). (B) Scale = 50 μm. (C) Scale = 20 μm.109

Plate 4-7: *Ulva compressa*. (A) Habit (Koonawarra Bay, 2/1/01). Scale = 5 cm. (B-C) Surface view of cells (aniline blue-stained) (NIC, 22/6/01). (B) Scale = 50 μm. (C) Scale = 20 μm...109

Plate 4-8: *Ulva ralfsii* (PBP, 6/6/01). (A) Habit. Scale = 1 cm. (B-C) Surface view of cells (aniline blue-stained). (B) Scale = 50 μm. (C) Scale = 20 μm..110

Plate 4-9: *Rhizoclonium riparium* (OCP, 3/2/01). (A) Habit. Scale = 1 cm. (B) Filament with lateral rhizoid. Scale = 100 μm. (C) Unbranched filaments. Scale = 100 μm.........110

Plate 4-10: *Chaetomorpha aerea*. (A) Habit (LIV, 25/11/00). Scale = 2 cm. (B-D) Parts of filament (Yallah Bay, 8/7/01). Scale = 200 μm. (B) Upper filament. (C) Middle of filament. (D) Base of filament. ..111

Plate 4-11: *Chaetomorpha linum*. (A) Habit (OCP, 23/1/01). Scale = 2 cm. (B) Filaments (Windang Peninsula, 20/1/01). Scale = 200 μm. (C) Filament with sporing structures (OCP, 25/11/00). Scale = 300 μm. (D-E) Filaments with gametangial branches (PBP, 20/5/01). (D) Scale = 1 cm. (E) Scale = 300 μm...111

Plate 4-12: *Chaetomorpha billardierii* (OCP, 25/11/00). (A) Habit. Scale = 2 cm. (B) Parts of filaments. Scale = 200 μm. ..112

Plate 4-13: (A-B) *Cladophora* sp. (PBP, 25/11/00). (A) Habit as an epiphyte. Scale = 5 mm. (B) Upper branches. Scale = 50 μm. (C-D) *Cladophora* sp. (Yallah Bay, 13/6/01). (C) Habit. Scale = 2 cm. (D) Upper branches. Scale = 200 μm. (E) Bloom of *Cladophora* over *Ruppia* beds near the Oasis Caravan Park, Windang Peninsula (19/3/02)...112

Plate 4-14: (A) *Codium fragile* (Tuggerah Bay, 6/6/01). Scale = 5 cm. (B) *Codium harveyi* (Tuggerah Bay, 6/6/01). (C-D) Utricles with gametangia. (C) *Codium fragile*. Scale = 200 μm. (D) *Codium harveyi*. Scale = 100 μm. ..113

Plate 4-15: (A-B) *Bryopsis* sp. (Yallah Bay, Lake Illawarra, 8/7/01). (A) Habit. Scale = 1 cm. (B) Scale = 500 μm. (C-D) *Lamprothamnium papulosum* (OCP, 3/9/01). Scale = 1 cm. (C) Habit. (D) Part of branch. ..113

Plate 4-16: *Ectocarpus siliculosus*. (A) Habit (Purrah Bay, 20/5/01). Scale = 2 cm. (B) Narrow plurilocular sporangia. Scale = 50 μm..119

- XIV -
Plate 4-17: *Hincksia* sp. (PBP, 6/6/01). (A) Habit, epiphytic on *Zostera*. Scale = 2 cm. (B) Branches with sporangia. Scale = 200 μm. (C) Plurilocular sporangia. Scale = 20 μm.

Plate 4-18: (A) *Scytosiphon lomentaria* (Yallah Bay, 4/8/01). Scale = 2 cm. (B) *Petalonia fascia* (Yallah Bay, 8/7/01). Scale = 2 cm. (C) *Colpomenia peregrina* (NIC, 4/8/01). Scale = 1 cm. (D-E) *Cystoseira trinodis* (Yallah Bay, 8/7/01). (D) Habit. Scale = 5 cm. (E) Upper branch with vesicles and receptacles. Scale = 1 cm.

Plate 4-19: (A-B) *Sargassum* sp. (Yallah Bay, 8/7/01). (A) Habit. Scale = 5 cm. (B) Part of upper branch. Scale = 1 cm. (C) *Hormosira banksii* (drift, Lake Illawarra entrance channel, 20/7/01). Scale = 2 cm. (D) *Ecklonia radiata* (drift, Lake Illawarra entrance channel, 19/3/01). Scale = 10 cm. (E-F) *Phyllospora comosa* (drift, Lake Illawarra entrance channel, 17/1/01). (E) Habit. Scale = 20 cm. (F) Part of branch. Scale = 2 cm.

Plate 4-20: (A-B, E) *Hypnea boergesenii* (Yallah Bay, 23/1/01). (A) Habit. Scale = 1 cm. (B) Branch of dried plant. Scale = 2 mm. (E) Cross-section through main axis (aniline blue-stained). Scale = 150 μm.

Plate 4-21: *Spyridia filamentosa* (PBP, 25/11/00). (A) Habit, epiphytic on *Zostera*. Scale = 3 mm. (B) Part of upper branch (aniline blue-stained). Scale = 200 μm. (C) Nodes with involucrate tetrasporangia. Scale = 50 μm.

Plate 4-22: *Ceramium* sp. (Yallah Bay, 19/3/02). (A) Habit of upper branch (aniline blue-stained). Scale = 150 μm. (B) Branch with tetrasporangia. Scale = 200 μm. (C) Tetralsporangial branch with acut e apex (aniline blue-stained). Scale = 150 μm. (D) Spermatangial plate (aniline blue-stained). Scale = 50 μm.

Plate 4-23: (A-C) *Centroceras clavulatum* (Purry Burry Point, 25/11/00). (A) Habit, epiphytic on *Ruppia*. Scale = 5 mm. (B) Habit of upper branch (aniline blue-stained). Scale = 150 μm. (C) Enlarged view of upper branch, showing nodal bands (aniline blue-stained). Scale = 50 μm. (D) Apex of a ramellus (aniline blue-stained). Scale = 30 μm.

Plate 4-25: *Grateloupia filicina* (Yallah Bay, 3/9/01). (A) Habit. Scale = 2 cm. (B) Branch of branchlet. Scale = 5 mm. (C-D) Cross-section through main axis, with developing carposporophyte. Scale = 50 μm (aniline blue-stained). (C) Scale = 100 μm. (D) Scale = 50 μm.

Plate 4-26: (A-B, E) *Ceramium* sp. (Yallah Bay, 19/3/02). (A) Habit of upper branch (aniline blue-stained). Scale = 150 μm. (B) Branch with tetrasporangia. Scale = 200 μm. (C) Tetralsporangial branch with acut e apex (aniline blue-stained). Scale = 150 μm. (D) Spermatangial plate (aniline blue-stained). Scale = 50 μm.

Plate 4-27: *Spyridia filamentosa* (PBP, 25/11/00). (A) Habit, epiphytic on *Zostera*. Scale = 3 mm. (B) Part of upper branch (aniline blue-stained). Scale = 200 μm. (C) Nodes with involucrate tetrasporangia. Scale = 50 μm.
Lake Illawarra is a shallow barrier lagoon, located on the south-eastern coast of Australia. Eutrophication, referring to the enrichment of water by inorganic plant nutrients (primarily nitrogen and phosphorus), is one of the key environmental problems in Lake Illawarra. Management of macroalgae in Lake Illawarra is a major issue; excessive blooms of macroalgae, resulting in odours, access problems and community concern over Lake health, have led to many management strategies, including direct harvesting of algal biomass. Little information is available on the factors responsible for excessive growth of macroalgae in Lake Illawarra, although over supply of nutrients has often been cited as the primary cause. The aim of this study was to investigate the distribution, diversity, biomass and nutrient relationships of seagrasses and macroalgae in Lake Illawarra, and to determine what contribution, if any, macrophytes make to the Lake’s nutrient budget.

Firstly, detailed species lists and taxonomic descriptions were prepared for macrophytes occurring in Lake Illawarra, between June 2000 and July 2003. This study focused primarily on shallow (< 1 m depth), inshore areas of Lake Illawarra, where problematic macroalgal blooms frequently occur. Seagrasses found in Lake Illawarra are *Zostera capricorni*, *Ruppia megacarpa*, *Halophila ovalis* and *Halophila decipiens*. In addition, 35 species of macroalgae were recorded and described; these included: 14 species from 7 genera of green macroalgae; 9 species from 9 different genera of brown macroalgae; and, 8 species from 8 genera of red macroalgae.

The biomass of seagrasses and macroalgae in Lake Illawarra were documented seasonally (winter and summer) at four key Lake Illawarra sites; these included two *R. megacarpa* sites and two *Z. capricorni* sites. Average *R. megacarpa* and *Z. capricorni* dry weight (DW) biomasses (above and below-ground material) ranged from 54.8 - 440 g DW m\(^{-2}\) and 58.1 - 230 g DW m\(^{-2}\), respectively. Significant die-back, particularly of *Z. capricorni*, occurred in winter; summer biomasses were up to 1.5 - 3.9 times higher than winter biomasses. Below-ground material (roots and rhizomes) comprised 20 - 45 % and 40 - 67 % of total plant biomass for *R. megacarpa* and *Z. capricorni*, respectively. Macroalgal biomass in 2000-03 was notably lower than in previous decades; this may be due to drought, as well as improvements in water quality. Maximum biomasses of macroalgae recorded in the present study were 150 - 370 g DW m\(^{-2}\). Algal blooms were composed primarily of the filamentous chlorophytes, *Chaetomorpha linum* and *Chaetomorpha billardierii*. The highest seagrass (*R. megacarpa*) and macroalgal biomasses usually occurred at the Oasis Caravan Park site, located along the eastern Lake Illawarra peninsula.

Tissue nutrient analyses were conducted on the most abundant seagrasses (*Z. capricorni* and *R. megacarpa*) and macroalgae occurring at four sites in Lake Illawarra, between spring 2000 and
winter 2002. Total C contents of macrophytes varied from 23.3 - 42.0 % C for seagrasses, and 28.0 - 39.7 % C for macroalgae. The $\delta^{13}C$ and $\delta^{15}N$ contents of seagrasses ranged from -7.7 to -15.9 ‰ and 0.7 - 9.0 ‰, respectively. The most significant seasonal variations in seagrass $\delta^{13}C$ contents and, to a lesser extent $\delta^{15}N$ contents, occurred in Z. capricorni located at the source of fresh water input, Mullet Creek. Macroalgae showed a greater variation in isotopic signatures than the seagrasses, ranging from -4.9 to -19.8 ‰ ($\delta^{13}C$) and 1.8 - 14.6 ‰ ($\delta^{15}N$). Differences between species at the same site were often more significant than differences between the same species at different sites. Seagrass leaf N and P contents ranged from 1.74 - 4.13 % (mean ± s.e.: 2.62 ± 0.05 % N) and 0.12 - 0.59 % P (mean ± s.e.: 0.31 ± 0.01 % P); leaf N and P contents were typically double those of roots/rhizomes. N contents varied between species and sites, but P contents of Z. capricorni were usually significantly higher than R. megacarpa. Z. capricorni C and N contents increased in winter, corresponding to lower winter biomasses. Seagrass leaf biomass and tissue P contents peaked in summer 2002, which may be related to higher water column P concentrations in summer. Tissue N and P contents of macroalgae were more variable than those of the seagrasses, and ranged from 0.85 - 3.95 % N and 0.03 - 0.58 % P. The average C/P (808 ± 65) and N/P (47.9 ± 3.47) molar ratios of macroalgae were typically double those of the seagrasses. Low concentrations of tissue P, with respect to N, in R. megacarpa and macroalgae implied P limitation on several occasions, particularly when macrophyte biomasses were low. High tissue N contents in Lake Illawarra macrophytes suggested N limitation of biomass formation rarely occurred. Evidence of P, rather than N, limitation in macrophytes is surprising considering most data suggests N limitation of phytoplankton production in Lake Illawarra. The estimated pools of N and P contained in Lake Illawarra macrophyte biomass were similar to those present in the water column, but appeared minute when compared to the N and P stored within Lake Illawarra sediment.

Laboratory culture experiments were conducted to evaluate the response of the most problematic alga, Chaetomorpha linum, to nutrient enrichment. Water temperatures of 20 - 25°C were found to promote the highest growth rates (up to 27 % WW d$^{-1}$) of C. linum, but high growth rates (13 % WW d$^{-1}$) were also recorded at 10°C, the lowest winter water temperature recorded in Lake Illawarra. Enrichment with N, rather than P, had the greatest effect on C. linum; growth rates were significantly reduced in treatments without added N, but treatments with N-alone were statistically similar to N+P treatments. It was concluded that in Lake Illawarra, C. linum was strongly nitrogen limited. The ability of C. linum to grow successfully in culture, under a range of nutrient treatments, and without added phosphorus, in particular, correlates with the excessive growth of this alga in Lake Illawarra.

This study has made a significant contribution to the understanding of seagrass and macroalgal growth, biomass and distribution in Lake Illawarra. This information will assist with the long-term management of macroalgal problems in Lake Illawarra.
Publications arising to date from this study

Acknowledgements

I would like to sincerely thank my supervisors, Professor John Morrison and Associate Professor Ron West for their advice, support and assistance throughout this study. I am also truly grateful to staff in the School of Earth and Environmental Sciences, University of Wollongong, especially Sandra Quin, Mark O’Donnell and Marina McGlinn.

Thank you to fellow students (both past and present) in the Environmental Science program for sharing information, and providing assistance and company in the field and laboratories. Special thanks are due to Wenchuan Qu, Christina Howley, Nick Kuster, Andrew Wheeler, Shilpa Rajkumar, Radka Dostal and Dongyan Liu.

Thanks are due to Garry Clarke and staff at the Lake Illawarra Authority for their valuable assistance with this research.

My sincere thanks go to Dr Alan Millar of the National Herbarium of New South Wales, for much-needed assistance in identifying macroalgal samples.

Thank you to Mr Neil Proposch for providing the opportunity to work interstate, and for his support in allowing me to spend time on my thesis in the crucial final stages of this PhD.

I am especially grateful to Andrew Susani and my family, for their understanding, encouragement, and support throughout this journey.

I am thankful to the University of Wollongong and the Lake Illawarra Authority for supporting this research. Thanks also to the examiners who provided invaluable advice and critique on this thesis. This study was funded through an Australian Research Council (ARC) Industry Linkage Grant. Industry partners included the Department of Infrastructure, Planning and Natural Resources and the Department of Environment and Conservation (now the Department of Environment and Climate Change).