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Abstract 

We present vertically integrated measurements of C2H2, C2H4, C2H6, HCOOH, CO, H2CO, 

HCN and NH3 through smoke plumes from Australian forest fires measured by ground-based 

solar absorption spectroscopy. The column amounts of these gases are highly correlated with 

simultaneous, co-located measurements of aerosol optical depth, providing a potential 

method of mapping biomass-burning emissions using satellite measurements of aerosol 

optical depth. We have calculated emission ratios relative to CO for the trace gases using 

aerosol optical depth as a proxy for CO and converted to emission factors by using an 

average emission factor for CO from literature measurements of extra-tropical forest fires. 

The results show that Australian forest fire emissions are broadly similar to those from other 

geographical regions except for comparatively low emissions of C2H6. 
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1. Introduction 

Biomass burning releases large amounts of trace gases and particulates into the 

atmosphere, significantly affecting global atmospheric chemistry, degrading air quality, and 

impacting on radiative transfer in the atmosphere [Crutzen and Andreae, 1990]. In the last 

two decades there has been significant effort to characterise fire emissions around the globe 

with many large-scale ground-based and airborne measurement campaigns of biomass 

burning [Delmas et al., 1999; Fishman et al., 1996; Kaufman and al, 1998; Lacaux et al., 

1995; Lindesay et al., 1996; Swap et al., 2003; Torres et al., 2005]. The resulting body of 

information on the emission characteristics of different types of biomass fires in savannas and 

grasslands, tropical and extra-tropical forests, bio-fuel consumption, charcoal burning and 

agricultural residue burning have been collated and summarised recently [Andreae and 

Merlet, 2001]. Where multiple measurements exist the scatter in results is often large, not 

only because of real variability in emissions from different fires, but also because of the 

difficulty of obtaining a good representative average sample of the smoke plume. This is 

made especially problematic by the significantly different emissions that result from 

smouldering and flaming combustion stages in a single fire. Ground-based sampling tends to 

over-represent smouldering emissions which are typically emitted during less vigorous 

burning stages and hence tend to remain closer to the ground. In contrast flaming combustion 

emissions are lofted to higher altitudes due to hotter burning conditions and so airborne 

measurements may be biased towards these emissions.  

This study describes vertically integrated measurements made by ground-based 

spectrometers using the sun as a source and extends the work reported previously [Paton-

Walsh et al., 2004]. Measurements were made on more than thirty separate days, through 

smoke plumes originating from bushfires only a few kilometres away to distant bushfires 
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hundreds of kilometres away. These measurements constitute a varied sample, which we 

believe is representative of typical Australian temperate forest fires. 

 

2. Measurements  

 
During the 2001/2002 and 2002/2003 austral summers, we recorded more than one 

thousand infrared solar atmospheric absorption spectra at Wollongong NSW, Australia 

(34.5°S, 150°E, 20m above sea level) through smoke plumes originating from many different 

bush-fires. Simultaneous and co-located direct solar spectral irradiance measurements 

spanning the ultra-violet and visible wavelengths were made every 20-30 seconds, using an 

Ocean Optics OD2000 grating spectrometer with a 2048 pixel CCD detector array, so that the 

optical depth of the atmosphere during the time of the infrared measurements could be 

determined.  The infrared solar atmospheric absorption spectra were recorded using a Bomem 

DA8 high-resolution Fourier transform infrared spectrometer coupled to a solar tracker that 

transmits the direct solar beam to the entrance aperture of the spectrometer. The tracker has 

both active and passive tracking systems and is able to follow the sun through smoke plumes 

that are essentially opaque in the visible. Spectra were recorded in seven separate regions of 

the infrared from 700 cm-1 to 4500 cm-1 using Mercury Cadmium Telluride and Indium 

Antimonide detectors, and a series of seven different IR band pass filters [Griffith et al., 

1998]. Typical measurement times per spectra ranged from 3 to 15 minutes depending on the 

optical path difference employed (50 to 250 cm). 
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3. Analysis  

3.1 Analysis of Visible Spectra for Aerosol Optical Depth 

The spectral irradiance measurements were calibrated using the Langley technique to 

derive the top of the atmosphere signal from data collected on clear days before and after the 

smoke measurements [Wilson and Forgan, 2002]. Individual estimates of aerosol optical 

depth (AOD) at 500 nm were derived from each measurement of directly transmitted light 

through subtraction of the Rayleigh scattering component, and the mean value calculated for 

the period of time taken to record each of the infrared spectra. Although our measurements 

span the visible spectrum, maximum signal intensity and minimum interference by molecular 

absorbance is obtained at 500nm. Elevated AOD values can result from cloud cover as well 

as smoke, however since cloud strongly attenuates the mid-infrared signal, the strength of the 

infrared signal has allowed periods of significant cloud interference to be removed from the 

measurement dataset. By using a combination of elevated AOD values and attenuated 

infrared signal, all data (both UV/visible and IR), are successfully screened for clouds. 

 

 

3.2 Analysis of Infrared Spectra for Trace Gas Amounts 

The number of molecules per square centimetre of each trace gas above the measurement site 

(the vertical column amount) was derived from individual spectra in the appropriate filter 

regions by iteratively adjusting the concentration of the target gas in a simulated spectral 

interval (or intervals) until the difference between measured and simulated spectrum was 

minimised.  The simulated spectrum used a layered model of the atmosphere, with the 

pressure, temperature and an initial concentration for each gas assigned over 39 layers. 

Retrievals were performed using the SFIT2 non-linear iterative fitting algorithm [Rinsland et 

al., 1998], which is based on Rodgers optimal estimation method [Rodgers, 2000] returning 
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the concentration profile of the target gas which best fits a suitably weighted combination of 

the measured and  simulated spectra. The a priori profile of the simulated spectrum is 

weighted by the covariance matrix (a matrix that defines the expected variation in the 

concentration of the target gas at each layer of the simulation).  The measured spectrum is 

weighted by an empirically defined matrix with diagonal elements defined by the signal-to-

noise ratio in the spectral interval of interest, and off-diagonal elements defined by a 

Gaussian function with an assumed  interlayer correlation length of 4km. 

 

The study described here includes both the first analysis of the smoke-affected atmospheric 

absorption spectra for acetylene (C2H2), ethylene (C2H4), ethane (C2H6) and formic acid 

(HCOOH) and reanalysis of the spectra for carbon monoxide (CO), hydrogen cyanide 

(HCN), formaldehyde (H2CO) and ammonia (NH3) previously reported [Paton-Walsh et al., 

2004]. This work expands on the recent study of C2H4 for a particular fire scene by [Rinsland 

et al., 2005] that using selected Wollongong smoke affected spectra from a single day. The 

initial analysis used monthly average pressure and temperature profiles and a priori 

concentration profiles typical of clean air conditions with the analysis weighted to allow very 

large variability in the boundary layer and lower troposphere to achieve a good fit. In this 

study daily temperature and pressure data from balloon sondes launched from Sydney airport 

(80km to the North) were splined with National Centers for Environmental Prediction data to 

give more accurate temperature and pressure profiles. A priori concentration profiles typical 

of Northern Hemisphere clean air were used for the initial analysis, but this was followed by 

a second stage of analysis that used the average of the retrieved profiles from the initial 

analysis as the new a priori concentration profile and the variance of the concentration at 

each altitude layer as the basis on which to construct a new covariance matrix. For several 

gases (C2H4, HCOOH, HCN, H2CO and NH3), the variance of the first stage retrievals was 
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similar to that of carbon monoxide and a single covariance matrix was used in all these cases. 

Also the analysis of HCOOH and C2H4 used a single retrieval stage with an a priori 

concentration typical of clean air because using the average retrieved profile produced 

instabilities in the retrievals. In addition, a more thorough uncertainty analysis has been 

undertaken and for reasons of consistency and completeness, the reanalyses of CO, HCN, 

H2CO and NH3 are presented here alongside those of the new trace gases. Table 1 shows the 

spectral interval or intervals used for the retrieval of each trace gas, the interfering gases that 

were also fitted in the retrieval, and the mean values of the main uncertainties affecting the 

precision of these retrievals.   

 

3.3 Uncertainty Analysis  

The effects of pressure broadening on the shapes of absorption features allow for limited 

vertical resolution in the measurements. The smoothing uncertainty is the uncertainty in the 

total column amount that results from the inability of the retrieval to distinguish perfectly 

between absorption at different altitudes [Rodgers, 2000]. The signal-to-noise uncertainty is 

the column amount of each trace gas that would produce the equivalent area of absorption 

feature as the noise in each spectrum. This uncertainty is the dominant uncertainty for many 

of our target gases because of the small absorption features being fitted. These first two 

uncertainties were calculated separately for each individual spectrum, and the values given in 

Table 1 are the mean of all spectra. Also included are the temperature sensitivities of the 

absorption features used, multiplied by a temperature uncertainty of 5°C. The temperature 

uncertainty was derived from variability in balloon sonde measurements over a 12 to 24 hour 

time period at the height of the smoke plumes. This uncertainty in temperature is quite large 

because of the large temperature variations in the boundary layer and lower troposphere 

where the majority of the target gases are concentrated. Finally these three independent 
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components of uncertainty are added in quadrature to give a total uncertainty for each 

spectrum. Note that the total uncertainty is calculated for each individual spectrum by 

summing in quadrature the contributing uncertainties for that particular spectrum. The mean 

total uncertainty that results differs slightly from the sum in quadrature of the mean of the 

contributing uncertainties for all spectra. 

 

4. Correlations between Aerosol Optical Depth and Column Amounts of Trace Gases 

 

Figures 1 (a)-(h) show vertical column amounts of CO, H2CO, C2H6, HCN, C2H4, NH3, 

HCOOH and C2H2 plotted against simultaneous, co-located measurements of AOD. The data 

have been colour-coded to distinguish different measurement time periods. The error-bars are 

the total uncertainty for each spectrum calculated as described above and the one sigma 

standard deviation of the aerosol optical depth measurements during the time taken to record 

each infrared spectrum. The correlations between the trace gases and AOD, evident from the 

plots, are consistent for hundreds of independent spectra from many different fire episodes 

over all the different time-periods with the exception of the spectra recorded on January 1, 

2002. On the morning of January 1, 2002 there was thick smoke trapped near ground level 

and four spectra were recorded before the arrival of a distinctive smoke plume was noted. 

These four spectra used the optical filters that transmitted in the regions used to derive C2H4; 

NH3 and HCOOH, and both of the regions used to derive CO. By comparison with this 

January 1 morning data and other days, it appears that the AOD is low rather than other gases 

being high. After the arrival of this plume most of the plots show exceptional behaviour, with 

much higher trace gas to AOD ratios. A possible explanation for this anomalous data is that 

the smoke plume sampled on January 1, 2002 was from one of the fires burning very near the 

measurement site (< 5km) and the aerosols had not yet coalesced into a comparably stable 
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form, resulting in a lower AOD value than normal. For this reason the data from January 1, 

2002 have been excluded from the regression analysis.  

The gases shown in Figure 1 are all highly correlated with AOD. These correlations 

are significant because of their potential use in tracking biomass-burning plumes from 

satellites. Table 2 shows the results of generalised least squares orthogonal distance 

regression analysis (http://www.eurometros.org/ Distributions: “xgenline”) on the column 

amounts of each trace gas and the coincident AOD measurements. The regression equations 

relating AOD to these trace gases may be used to translate a satellite measurement of AOD 

into an estimated column amount of each trace gas present in a fire-affected region (see 

[Paton-Walsh et al., 2004]). This can be used to map biomass-burning emissions from 

satellites and better constrain chemical transport models to get more accurate estimates of 

total emissions from fire episodes. These measurements are representative of Australian 

forest fires only; no data for fires in other regions of the world have been analysed using this 

method. 

 

5. Emission ratios of trace gases using Aerosol Optical Depth as a proxy for carbon 

monoxide 

Trace gas concentrations within smoke plumes can vary rapidly with time, so the 

concentration levels are usually converted to relative emission ratios by dividing by 

coincident measurements of CO or CO2 [Hurst et al., 1994a]. Our chosen reference gas is 

CO, because the excess levels of CO2 present in smoke are difficult to measure with 

sufficient accuracy against its large and variable background amount. In this study we have 

no coincident measurements of CO with the other trace gases because the column amounts 

are derived from spectra recorded at different times using different optical filters. Depending 

on filter combinations, the difference in times between various tracers and CO could be 
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between 10 and 30 minutes. Instead we have calculated molar emission ratios with respect to 

CO using AOD as a de-facto measurement of the CO column via the regression equation 

given in Table 2. 

 

First, all data with AOD less than 1.0 were excluded because of the large uncertainties 

introduced when taking the ratio of two small numbers. For the remaining spectra, we 

calculated emission ratios by dividing the excess amount of the trace gas over background 

levels by the excess amount of CO over background levels. The choice of background aerosol 

optical depth is not critical for this analysis as it is very low. We have chosen a background 

optical depth of 0.03, based on analysis of earlier measurements at Wollongong [Phillips, 

2001] and the long-term aerosol optical depth record observed at Cape Grim [Wilson and 

Forgan, 2002]. The background values for CO and the other tracers where obtained from the 

intercept of the regression plots with respect to AOD (see Table 2). The resulting emission 

ratios are given in Table 3. 

 

6. Emission Factors Extrapolated from Emission Ratios to CO  

 

A parameter frequently used to characterise emissions from fires is the emission 

factor, which is defined as the amount of a compound released per amount of dry fuel 

consumed, expressed in units of g kg-1. To convert our data from emission ratios with respect 

to CO to emission factors, we use the following equation: 

EFX = ER(X/CO).(MWX/MWCO).EFCO 

 (where EFX = the emission factor for trace gas X; ER(X/CO) = the molar emission ratio of 

trace gas with respect to CO; MWX = the molecular weight of trace gas X; MWCO = the 
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molecular weight of CO and EFCO = the emission factor for CO [Andreae and Merlet, 

2001]). 

 

The emission ratios from this study have been converted to emission factors using the mean 

emission factor for CO, (EFCO ) for extra-tropical forests of 107 ± 37 g kg-1 (personal 

communication, M.O. Andreae, 2005. An update of previous estimates [Andreae and Merlet, 

2001]). These emission factors are given in Table 3 alongside the mean emission factor of 

each trace gas from extra-tropical forest measurements taken from [Andreae and Merlet, 

2001]. The uncertainties quoted for this study are derived from the large uncertainty in the 

emission factor for CO, (35%), combined in quadrature with the one-sigma standard 

deviation in the emission ratio to CO for each trace gas. The uncertainties shown for the 

mean emission factors from extra-tropical forest measurements are the one-sigma standard 

deviations of all the measurements used. Note that the literature based emission factor for 

HCN, given in parenthesis, is an estimate extrapolated from measurements from savannah 

fires.  

 

The emission factors calculated for Australian temperate forest fires in this study for C2H2, 

HCOOH and H2CO agree well with the average for all extra-tropical forests, while those for 

C2H4 and NH3 are comparatively low, but lie within one-sigma uncertainties levels. Most of 

our measurements occur many kilometres downwind of the fires and so shorter-lived species 

may yield lower than the expected emission ratios with respect to CO.  The age of smoke 

sampled in our dataset varies between different time periods and this contributes to the 

variability of the shorter-lived species. Only our results for the emission factors of HCN and 

C2H6 show significant departure from the values quoted by Andreae and Merlet. In the case 

of HCN the Andreae and Merlet value is questionable because it is a “best guess”, (based on 
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an extrapolation from measurements made from savannah and grassland fires), whilst our 

value for HCN of (0.43 ± 0.22) g kg-1 is in better agreement with airborne FTIR 

measurements through smoke plumes from Alaskan forest fires of 0.61 g kg-1 [Goode et al., 

2000].  

For C2H6, our measurement uncertainties are low; the expected atmospheric lifetimes of CO 

and C2H6 are similar [Trentmann et al., 2003] and hence the emission ratio with respect to 

CO is very consistent throughout our measurements from many different fire episodes. We 

note that previously reported emission ratios for C2H6 from Northern Australian savannah 

fires by Shirai et al.  [2003] are consistent with those reported here but lower than those 

reported by Hurst et al. [1994b]. The high range data of Hurst et al. [1994b] used a limited 

number of grab samples that may not have been well mixed enough to provide a truely 

representative sample. We conclude that relatively low emission of C2H6 is a characteristic of 

Australian temperate forest fires where the fuel source is predominantly varieties of 

Eucalyptus trees. 

 

7. Conclusions 

A thorough analysis of ground-based solar absorption spectra taken through smoke plumes 

from Australian forest fires has yielded vertically integrated measurements of C2H2, C2H4, 

C2H6, HCOOH, CO, H2CO, HCN and NH3 emissions. The emissions measurements are well 

correlated with simultaneous, co-located measurements of aerosol optical depth, suggesting a 

potential use of satellite-based AOD measurements in tracking the gaseous emissions from 

biomass burning. This possibility is made especially interesting because satellite-based AOD 

measurements are sensitive right down to ground-level [Gonzalez et al., 2003], unlike most 

satellite-based measurements of trace gases.  
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Emission ratios with respect to carbon monoxide have been calculated for C2H2, 

C2H4, C2H6, HCOOH, H2CO, HCN and NH3 using aerosol optical depth as a proxy for CO. 

Converting to emission factors using an average value for the emission factor of CO from 

previous studies indicates that Australian forest fire emissions are broadly similar to those 

from other geographical regions except for comparatively low emissions of C2H6. 
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Figure Captions: 

Figure 1:  Vertical column amounts of CO, H2CO, C2H6, HCN, C2H4, NH3, HCOOH and 

C2H2 derived from individual spectra, plotted against simultaneous, co-located measurements 

of AOD.  The data have been colour-coded to distinguish different time periods. The error-

bars are the total uncertainty in the derived column amount for each spectrum and the one-

sigma standard deviation of the aerosol optical depth measurements during the time taken to 

record each infrared spectrum. 
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Table 1: shows the spectral interval or intervals used for the retrieval of each trace gas, the interfering gases that were also fitted in the retrieval, 

and the mean values of the main uncertainties (1σ) affecting the precision of these retrievals.   

Trace 

Gas 

Spectral Interval(s) 

fitted 

Interfering Gases 

Fitted in retrieval 

Smoothing 

Uncertainty 

Signal-to-noise 

Uncertainty 

Temperature 

Uncertainty 

Total 

Uncertainty 

C2H4 

 

945.00 – 952.00 H2O, CO2, NH3 
3.5% 3.8% 3% 6.4% 

NH3 

 

1046 – 1046.75 H2O, O3, CH4 
14.5% 16.5% 2.7% 22.4% 

HCOOH 1104.40 – 1106.00 H2O, HDO, O3 5.8% 26.6% 2.0% 27.5% 

CO 2057.68 – 2058.00 

2069.55 – 2069.76 

CO2, O3 
5.8% 2.5% 1.3% 6.5% 

H2CO 2778.12 – 2778.80 

2780.60 – 2781.17 

CO2, O3, CH4 
3.1% 10.8% 1.6% 11.4% 

C2H6 2976.60 – 2977.10 

2996.70 – 2997.10 

3000.10- 3000.60 

H2O, H2CO, CH4 

4.4% 3.0% 2.3% 5.8% 

C2H2 3304.80 – 3305.30 H2O, HDO 4.7% 8.5% 1.9% 10% 

HCN 3268.00 – 3268.38 

3287.00 – 3287.48 

H2O 
9.8% 3.3% 2.1% 10.6% 
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Table 2: shows the results of generalised least squares regression analysis on the column 

amounts of each trace gas and the coincident AOD measurements. The equations relating 

trace gas amounts and AOD are in the format:  Trace gas = “Slope”(AOD) + “Intercept” 

and the Slope and Intercept for each gas is given along with the 1σ uncertainties from the 

regression analysis. It is important to note that the uncertainty in the regression analysis is an 

under-estimate of the true uncertainty because it assumes that the uncertainties are 

uncorrelated. Also there are significant other systematic uncertainties in the forward model 

that will contribute to the accuracy of these equations such as the uncertainties in the 

HITRAN 2000 line parameters used. 

 

Trace Gas Slope Intercept 

C2H4 (9.8 ± 0.8) x 1015 -(1.9 ± 1.7) x 1015 

NH3 (8.2 ± 0.4) x 1015 (2.4 ± 0.2) x 1015 

HCOOH  (2.1 ± 0.1) x 1016 (0.1 ± 0.1) x 1016 

CO (1.5 ± 0.1) x 1018 (1.5 ± 0.1) x 1018 

H2CO (2.5 ± 0.1) x 1016 (0.1 ± 0.1) x 1016 

C2H6 (3.4 ± 0.1) x 1015  (7.2 ± 0.1) x 1015 

C2H2  (3.5 ± 0.1) x 1015 (3.9 ± 0.1) x 1015 

HCN (5.3 ± 0.2) x 1015 (4.8 ± 0.2) x 1015 
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Table 3: Emission factors calculated in this study alongside the mean emission factor of each trace gas from extra-tropical forest measurements 

taken from [Andreae, 2005; Andreae and Merlet, 2001], including updates from M.O. Andreae, personal communication, M.O. Andreae, 2005. 

The uncertainties quoted for this study are derived from the large uncertainty in the emission factor for CO, (35%), combined in quadrature with 

the one-sigma standard deviation in the emission ratio to CO for each trace gas. The uncertainties shown for the mean emission factors from 

extra-tropical forest measurements are the one-sigma standard deviations of all the measurements used. 

Trace Gas No.of 

Spectra  

Emission Ratio to CO 

(mol/mol) 

Emission Factor (this study) 

g kg-1 (dry fuel) 

Emission Factor (Andreae & Merlet) 

 g kg-1 (dry fuel) 

C2H4 77 0.0057 ± 0.0027 0.61 ± 0.36 1.2 ± 0.5 

NH3 68 0.0095 ± 0.0035 0.62 ± 0.31 1.7 ± 1.3 

HCOOH 75 0.021 ± 0.010 3.7 ± 2.1 2.4 ± 2.3 

H2CO 60 0.023 ± 0.007 2.6 ± 1.2 1.9 ± 0.7 

C2H6 79 0.0023 ± 0.0005 0.26 ± 0.11 0.73 ± 0.41 

C2H2 77 0.0034 ± 0.0014 0.34 ± 0.18 0.26 ± 0.11 

HCN 77 0.0042 ± 0.0016 0.43 ± 0.22 (0.81) 
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Figure 1: (a-d) 
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Figure 1: (e-h) 
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