Effect of uranium doping and thermal neutron irradiation on the flux-pinning of silver-clad Bi-Sr-Ca-Cu-O tapes

D. Marinaro
University of Wollongong

S X. Dou
University of Wollongong, shi@uow.edu.au

J. Horvat
University of Wollongong, jhorvat@uow.edu.au

J. Boldeman
ANSTO, Australia

R. Weinstein
University of Houston, USA

See next page for additional authors

Follow this and additional works at: https://ro.uow.edu.au/engpapers

[Part of the Engineering Commons](https://ro.uow.edu.au/engpapers/21)

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Effect of Uranium Doping and Thermal Neutron Irradiation on the Flux-Pinning of Silver-Clad Bi-Sr-Ca-Cu-O Tapes

Damian G. Marinaro, Shi X. Dou, Josip Horvat, John Boldeman, Roy Weinstein and Ravi Sawh

Abstract—Ag/Bi-2223 tapes doped with small quantities of 235UO$_4$ powder were prepared by the powder-in-tube process and irradiated in a thermal neutron environment. Substantial improvements in critical current density (J_c) – applied field (H) performance and anisotropy have been previously reported. However, the radioactivity of the silver sheath is a limiting factor for commercial and industrial applications of this technique.

Here we report the performance of the technique using various doping levels (from 0.15 to 2 percent by weight ($wt\%$) UO_4) and thermal neutron fluences (Φ_n), in order to further reduce the silver radioactivity. Optimum fluence levels are identified and an optimum combination in terms of J_c - H performance is discussed. At a doping level of 2% $^{235}UO_4$, a normalised J_c enhancement of 250 times is observed for an 0.8T field aligned along the c-axis, and 25 times at 3T along the ab-plane at 77K, compared to pre-irradiation values. At 0.6%, these figures are 500 and 10 times, respectively.

The effects of the uranium doping and thermal neutron irradiation on the flux pinning strengths are also directly probed using dynamic relaxation techniques. The results show an increase in the effective pinning potential after doping and irradiation.

Index Terms—High Temperature Superconductors, Flux Pinning, Uranium Doping, Neutron Irradiation.

I. INTRODUCTION

The application of HTS tapes to industrial and commercial products is restricted by the maximum current that may be conducted by the tape within a typical working environment. Working environments may involve magnetic fields of different strengths as well as varying orientations relative to the superconducting matrix of the tape. It is therefore important to develop HTS tapes that have a low J_c degradation under an applied field and a low J_c dependence on the field orientation.

The J_c and J_c-H performance of HTS materials is limited by weak links at grain boundaries and by the motion of magnetic flux lines that penetrate the HTS material. Over the course of the last decade, much progress has been made into the weak link problem, improving the zero-field J_c to a level approaching the requirements for some commercial applications. Improvements in grain connectivity, texture and phase composition are some of the areas where progress has been made [1], [2]. The problem of flux pinning, however, is not well resolved by these materials processing technologies for technical applications.

One method used to improve the pinning properties of HTS materials is the introduction of structural defects into the crystalline lattice [3]. The defects suppress the local superconducting order parameter. Magnetic flux lines are then pinned in the region of damage because the energy associated with magnetic flux penetration into superconductor is smaller in this region with weaker superconductivity.

Irradiation techniques can be used to create the structural defects. Irradiating a HTS sample with a fluence of heavy ions can create a columnar track of damage which acts as a strong pinning centre, but all the tracks are aligned along the direction of the incident ion beam and so pinning is effective only for specific field orientations [4]. Also, the tracks do not penetrate very far into the material because of the high stopping energy, so that pinning is limited to a surface layer. Fast neutron [5] or proton [6] irradiation is used to create damage centres within the entire sample volume, forming columnar defects. However they are not a cost-effective way of improving the flux pinning.

Ideally, defect centres should be uniformly located throughout the material, should have a columnar shape that maximises the pinning strength, and they should be oriented in random directions to reduce any vortex motion by kink-sliding between parallel defects. By doping the superconductor precursor powder with a small amount of ^{235}U and then irradiating with a thermal-neutron fluence, Φ_n, after processing [7], the fragments resulting from fission of the uranium can produce randomly splayed, roughly columnar tracks throughout the superconductor matrix.

This method has already produced very promising results in terms of J_c - H performance in Y123 and other HTS [8], particularly Ag/Bi-2223 tapes [9]. The major shortcoming of this method is the induced radioactivity of the silver sheath. Silver has a moderate thermal-neutron capture cross-section, decaying after neutron capture via β^+ and γ emission.
Minimising Φ_s will minimise the activity of the silver sheath, but it will also reduce the density of fission tracks, and hence the density of flux pinning centres. As the density of tracks is proportional to the total mass of 235U, times Φ_n, then a reduction in Φ_n can be compensated by an increase in 235U. However, as will be shown, an increase in 235U leads to a degradation in the zero-field J_c. A compromise level must be thus ascertained where the level of radioactivity can be kept as low as possible (low Φ_n) while still maintaining significant improvements in J_c at zero field and $J_c - H$ performance. The principle aim of this paper is to study the effects of reducing Φ_n and increasing the percentage of 235U on the flux pinning behaviour of Ag/Bi-2223 tapes, by using a wide range in 235UO$_4$ doping and neutron fluence.

The flux pinning strength can be probed more directly by dynamic magnetic-moment relaxation methods, as discussed in [10]. We begin with the relation [11]

$$\frac{d\langle B \rangle}{dt} = \frac{2H\nu_0}{d} \exp \left[-\frac{U_{\text{eff}}(j,H)}{kT} \right],$$

where $\langle B \rangle$ is the average flux density, a is the flux hop distance, ν_0 is an attempt frequency, d is a characteristic sample thickness and U_{eff} is an effective energy barrier to the motion of flux lines. Expanding the flux density in terms of the sample magnetisation, M, and the applied magnetic field, (1) can be rearranged to give

$$U_{\text{eff}}(j,H) = kT \left[\ln \left(\frac{H}{H} \right) + \ln \left(\frac{2a\nu_0}{d} \right) \right]$$

Here, use is also made of the assumption that by sweeping the field over a single hysteresis loop, at a constant sweep rate, $4\pi dM/dt = dH/dt$. If we plot the calculated U_{eff} against $M - M_{\text{eq}}$ (giving the irreversible magnetisation of the sample, M_{irr} and assume that $M_{\text{irr}} \approx J_c$, we obtain the approximate dependence of the effective activation energy on the current density. By measuring hysteresis loops at various temperatures and sweep rates, we can probe U_{eff} over a range of M_{irr}.

The second logarithmic term in (2) is essentially constant at fixed field and sweep rate. By requiring the continuity of U_{eff}, the value of the constant $C = \ln(2a\nu_0/d)$, can be estimated by plotting $\ln(H/\ln(dH/dt))$ against M_{irr} for different dH/dt and T.

II. EXPERIMENTAL PROCEDURE

A. Samples

Multi-filamentary Ag/Bi2223 tapes were fabricated using the P-I-T process [2]. Precursor powders were doped with a series of weight percentages of 235UO$_4$ (0.15, 0.6 and 2-wt%) prior to processing.

B. Irradiation

Tapes were packed in sets of three where possible: two tapes of a particular doping percentage, together with a non-doped tape. Each set was irradiated by highly moderated thermal neutrons at the HIFAR reactor of the Australian Nuclear Science and Technology Organisation, to various Φ_n. The combinations of 235UO$_4$ and Φ_n are shown in Table I.

C. Transport Measurements

Transport measurements of $J_c - H$ and $J_c - \theta$ (where θ is the angle of field orientation relative to the c-axis) from 0 to 1 Tesla were conducted on a 1.2 T electromagnet using a four-probe method and a 1 μV/cm criterion. High field measurements of $J_c - H$ were performed on a 12 T superconducting magnet. All measurements were performed at 77K.

D. Magnetic Measurements

Magnetic hysteresis loops for the determination of U_{eff} were performed in an Oxford Instruments VSM on two samples cut from tapes that had been doped to 0.6-wt%. One tape had been irradiated to $\Phi_n = 2.25 \times 10^{19}$ neutrons/m2, while the other remained non-irradiated. The measurements were taken at temperatures ranging between 77 and 15 K, and at sweep rates of 0.05, 0.1, 0.25, 0.5, 0.75 and 1.0 T/min.

III. RESULTS AND DISCUSSION

Fig. 1 shows the $J_c - H$ performance of the tapes, for field orientations parallel and perpendicular to the c-axis of symmetry of each tape (running perpendicular to the tape surface). From these plots, the effects of altering the doping percentages and neutron fluence levels can be clearly seen.

The first noticeable feature is that the zero-field critical current density, J_{Ref}, is reduced for the tapes with 2-wt% doping. The J_{Ref} for each tape is shown in Table I. This reduction in J_{Ref} is due to the inclusion of the uranium within the superconductor matrix. Efforts are under way to reduce this initial degradation by changing the methods by which the 235U is added to the precursor powder [12]. The current method of adding 235UO$_4$ powder therefore limits the effectiveness of increasing doping and reducing irradiation.

The best performance of critical current in both parallel and perpendicular applied fields is for a doping of 0.6-wt% and $\Phi_n = 3 \times 10^{19}$ m2. Then J_c is 25 times larger than for a non-irradiated tape at 5 T (perpendicular to the c-axis) and at 500 mT (parallel to c).

<table>
<thead>
<tr>
<th>Table I</th>
<th>Uranium Doping Percentages and Total Irradiation Fluence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doping Percentage</td>
<td>Thermal Neutron Fluence (10^{19} m2)</td>
</tr>
<tr>
<td>wt%</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.15</td>
<td>2.25</td>
</tr>
<tr>
<td>0.15</td>
<td>0</td>
</tr>
<tr>
<td>0.6</td>
<td>0</td>
</tr>
<tr>
<td>0.6</td>
<td>2.25</td>
</tr>
<tr>
<td>0.6</td>
<td>3</td>
</tr>
<tr>
<td>0.6</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>0.05</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Fig. 1. Critical current density as a function of applied magnetic field, for two field orientations: a) Field aligned with c-axis of symmetry of tape; b) Field aligned perpendicular to c-axis, along the ab-plane. The effects of Uranium doping and irradiation at different levels can be clearly seen.

A slightly higher Φ_0 of $4 \times 10^{19} \text{ m}^{-2}$ resulted in a reduced J_c, probably due to excessive damage to the superconductor matrix. In terms of absolute J_c performance, $\Phi_0 = 3 \times 10^{19} \text{ m}^{-2}$ appears to be an optimum level before degradation occurs. However, the overall pinning improvement is greater for the higher Φ_0. This can be seen by plotting the normalised critical current density, J_c/J_{c0}, as in Fig. 2. These show the changes in J_c caused by increasing the applied field. Improvements in pinning result in a weaker field dependence of J_c/J_{c0}. The best performance, in terms of the weakest field dependence, is then for a 0.6- wt% doping and $\Phi_0 = 4 \times 10^{19} \text{ m}^{-2}$ for either fields oriented along the c-axis, or fields greater than 7 T oriented perpendicular to the c-axis. However, J_{c0} decreases with the radiation damage. Because of this, the best performance in terms of J_c for fields perpendicular to c-axis was obtained for 0.6%- wt and $\Phi_0 = 3 \times 10^{19} \text{ m}^{-2}$, as seen in Fig. 1.

The performance of tapes doped with 2- wt% of UO_3 is improved with increasing irradiation. After irradiation to 0.2 $\times 10^{19} \text{ m}^{-2}$, the tape performance returns approximately to pre-doping levels, and after a 1 $\times 10^{19} \text{ m}^{-2}$ irradiation, the performance approaches that for a 6 $\times 10^{19} \text{ m}^{-2}$ irradiation on a tape doped with 0.15- wt%. Thus for a suitable increase in ^{235}U, the irradiation level can be substantially reduced while maintaining similar improvements in flux pinning. In this case, the irradiation fluence is 6 times lower, which results in a very significant drop in the radioactivity of the silver sheath.

The level that is considered as optimum for an industrial application depends entirely on any restrictions or requirements placed upon the tape by the particular application. If total available critical current over a wide range of applied fields is important, then a moderate uranium doping, followed by a moderate thermal neutron irradiation (for example, 0.6- wt% and $3 \times 10^{19} \text{ m}^{-2}$) provides significant improvements in $J_c - H$ performance. The level of silver radioactivity produced is still quite high though.

If, on the other hand, improvements in flux pinning are required and moderate J_c degradation is acceptable, but minimisation of silver radioactivity is important, then a higher percentage of ^{235}U and a low (but still sufficient) Φ_0 is best. If changes to the processing procedure can reduce the degradation of J_{c0} caused by the addition of ^{235}U compounds, then this combination would be optimal for most applications. This is also the optimal case if simple reduction in the anisotropic behaviour of the tapes is required in low applied fields. Fig. 3 shows an example of the angle dependence of J_c.

Fig. 2. Magnetic field dependence of J_c normalised to the zero field J_{c0}, for a) field parallel to c-axis, and b) field perpendicular to c-axis. These figures highlight more accurately the effects of improvements in flux pinning.
The results from different sweeping rates at a single temperature. The lowest isotherm, 15K, is on the far right (highest \(\Phi_n \)).

The flux pinning strength, \(U_{\text{eff}} \), was probed for two tapes doped with 0.6- wt% \(\text{U}_{235}\text{O}_4 \), one before irradiation and the other after irradiation to \(\Phi_n = 2.25 \times 10^{19} \text{ m}^{-2} \), and at an applied field of 500 mT parallel to the c-axis. The current dependence of \(U_{\text{eff}} \) is shown in Fig. 4. The values of \(C \) required for continuity were 18 and 25 for the non-irradiated and irradiated tapes, respectively. Temperature scaling was also required for continuity [13]. The activation energy was multiplied by \(g(T) = (1 - T/T_c)^2 \), where \(T/T_c \) to give good continuity at low temperatures.

We can see that there is a definite improvement in flux pinning energy after irradiation. At high currents the energy after irradiation is about one-and-a-half times as great, while at low currents \(U_{\text{eff}} \) is twice that before irradiation. The constant \(C \) also changes with irradiation. This change in \(C \) is due to fast neutron irradiation in single-crystal \(\text{YBaCuO} \) crystals, \(\Phi_n \).

We also note that the combination of flux hopping distance and attempt frequency changes after \(\text{U}_{235} \) doping and thermal neutron irradiation.

References