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MODEL-ASSISTED SAMPLE DESIGN OF A FIRST PHASE SURVEY

WITH TWO SECOND-PHASE SURVEYS

Robert Graham Clark1

1 Assumed Sample Design

Suppose there is a first phase sample s1 of m units, which is a simple random

sample without replacement (SRSWOR) from a population of size N . Mem-

bership of a subpopulation of interest (referred to as A) is collected from this

first phase sample. Let NA be the population size of the subpopulation and NB

be the remaining population. Write ai equal to 1 for the subpopulation and 0

otherwise. The first phase survey also collects auxiliary variables zi which may

include ai. Let mA and mB be the first phase sample sizes of subpopulation

members and non-members respectively.

Two non-overlapping second phase samples are selected from s1. Survey 1 is

designed to estimate the population total of a variable y, using z as an auxiliary

variable which is hopefully correlated with y. Survey 2 is designed to estimate

the population total and subpopulation total of a variable u, with the first phase

sample used to achieve oversampling of the subpopulation.

It is assumed that both Survey 1 and Survey 2 are stratified SRSWOR from

s1, stratified by subpopulation membership. Let nA and nB be the Survey 1

sample sizes from strata A and B. Let qA and qB be the Survey 2 sample sizes
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from the two strata.

In practice, it may be desirable to stratify using z, not just subpopulation

membership. A simplified setup is assumed here, because the requirement to

oversample the subpopulation in Survey 2 may be the dominant constraint.

This is not explicitly required for Survey 1, but is still included, because the

requirement for subpopulation sample will be a bottleneck for the overall design,

and so undersampling of the subpopulation in Survey 1 should be considered.

2 Model and Framework

The variable of interest in the Survey 1 is denoted yi for unit i, and the variable

of interest in Survey 2 is ui. The following model is assumed:

EM [yi] = µy

varM [yi] = σ2

EM [yi|zi] = βT zi

varM [yi|zi] = γ2

EM [ui|zi] = EM [ui] = θ

varM [ui|zi] = varM [ui] = ψ2

E [ai] = φ



(1)

Independence for distinct units is also assumed. We write γ2 =
(
1−R2

)
σ2

where R2 is the R-squared of the regression of yi on zi. The parameter φ is the

expected proportion of the population who are in the subpopulation.

A major assumption in the model is that the first phase variables have no

predictive power for the Survey 2 variable ui. In practice, this will be approxi-
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mately true for some Survey 2 variables but not others, so we are designing for

the worst case. In contrast, zi may have some predictive power for Survey 1

variables.

Another assumption is that there are no population auxiliary variables. This

can easily be incorporated into the results of this note, by assuming two-phase

GREG estimation, using both population-level and first-phase-level auxiliary

variables. The only change is that yi and ui would be redefined as the residuals

given the population auxiliary variables. This will be expressed more formally

in a future paper.

The model-assisted framework will be used. Multi-phase GREG estimation

is assumed. The anticipated variance (AV) is the model expectation of the

design variance. In model-assisted sampling, sample designs are usually derived

to optimise (at least approximately) the AV. This note will derive the AVs,

and optimise them with respect to the design parameters m,nA, nB , qA and qB ,

subject to constraints. Section 2 sets up the model and framework. Section 3

defines the design problem and states the AVs. Section 4 contains the solution.

The optimal design calculation has been implemented in R and a future version

of this paper will include numerical results for various parameter values.

3 Defining the Objectives of the Design

Let C1 be the cost per first phase unit. Let C2A and C2B be the cost per

subpopulation and non-subpopulation Survey 1 selection, and C3A and C3B be
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the cost per subpopulation and non-subpopulation Survey 2 selection. The total

cost is

C = C1m+ C2AnA + C2BnB + C3AqA + C3BqB (2)

The AV for the estimated totals of y is:

AV
[
t̂y
]

=
N2

m
σ2 + E

[
N2

m2

(
m2

A

nA

(
1− nA

mA

)
γ2 +

m2
B

nA

(
1− nB

mB

)
γ2
)]

=
N2

m
σ2 + E

[
N2

m2

(
m2

A

nA
−mA +

m2
B

nB
−mB

)
σ2
(
1−R2

)]

≈ N2

m
σ2 − N2

m

(
(φm)

2

nA
+

((1− φ)m)
2

nB

)
σ2
(
1−R2

)
− N2

m
σ2
(
1−R2

)

=
N2

m
σ2R2 +N2

(
φ2

nA
+

(1− φ)
2

nB

)
σ2
(
1−R2

)
(3)

assuming that m/N is negligible. Details of these derivations are omitted but

will be included in a future version of this paper. The derivation is broadly

similar to the derivations for two-stage sampling for subpopulations in Clark

(2009). Anticipated variances results for stratification can be found in Särndal

et al. (1992), although this text does not have a result for the precise situation

considered here. Similarly, we can obtain the AV for t̂u, noting also that the

equivalent of R2 for variable u is 0:

AV
[
t̂y
]

= N2

(
φ2

qA
+

(1− φ)
2

qB

)
ψ2 (4)

The AV for the estimate of the total of u for the subpopulation is:

AV
[
t̂yA
]

= N2φ2q−1
A ψ2 (5)
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The approach will be to minimise the total cost subject to constraints on

the AVs of t̂y, t̂u and t̂uA. Rather than setting values for the AVs, which would

be difficult to interpret, we will suppose that the AV of t̂y must be at least as

good as the AV that would be achieved by a single phase SRSWOR of size ky.

This AV is equal to N2k−1
y σ2. Equating this to (3), we get the first constraint:

m−1R2 + n−1
A φ2

(
1−R2

)
+ n−1

B (1− φ)
2 (

1−R2
)
≤ k−1

y (6)

Similarly, we require the effective sample size for estimating tu to at least ku,

giving us the constraint

q−1
A φ2 + q−1

B (1− φ)
2 ≤ k−1

u . (7)

We require the effective subpopulation sample size for estimating tuA to be at

least kuA, giving us the constraint

q−1
A ≤ k−1

uA. (8)

There are also some inequality constraints, because the first phase sample in

each stratum must be at least as large as the combined Survey 1 and Survey 2

sample sizes in each stratum:

nA + qA ≤ mA ≈ mφ (9)

nB + qB ≤ mB ≈ m (1− φ) (10)

We will assume that (10) will be satisfied, since the non-subpopulation popula-

tion is not to be heavily oversampled. Inequality (9) will be important, because

under some scenarios the first phase subpopulation sample size will be a limiting

factor.
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So, the problem is to minimise the cost (2) with respect to m,nA, nB , qA, qB

subject to constraints (6), (7) and (8).

4 Optimal Design Derivation

4.1 Initial Comments

Firstly, (7) must be satisfied with equality, since otherwise we can reduce the cost

by reducing qB without violating any constraints. Similarly, equality must hold

in (8) at the optimum, otherwise we can reduce the cost by reducing qA without

violating any constraints. With equality, (7) and (8) immediately determine qA

and qB :

The problem simplifies rapidly, as (8) immediately determines that qA =

kuA, and (7) then gives qB :

qA = kuA (11)

qB =
{
k−1
u − q−1

A φ2
}−1

(1− φ)
2

(12)

Constraint (6) must also hold with equality, because otherwise we can reduce

the cost with impunity by reducing either nA or nB .

The problem is now to minimise the cost (2) with respect to m, nA and nB

subject to (6) with equality and to (10).

There are two possibilities depending on whether constraint (10) is active or

inactive.
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4.2 First Case: (10) is Inactive

The first possibility is that (10) is inactive, i.e. if we optimise ignoring the

constraint, it turns out to be satisfied anyway. Ignoring (10), this is a standard

Neymann allocation problem. The solution can be derived either using the

Cauchy-Schwarz inequality or Lagrange multipliers (e.g. Clark and Steel 2000),

and is:

m = λ
√
R2/C1

nA = λφ
√

(1−R2) /C2A

nB = λ (1− φ)
√

(1−R2) /C2B

where

λ = ky

{√
C1R2 + φ

√
C2A (1−R2) + (1− φ)

√
C2B (1−R2)

}
.


(13)

For simplicity, it will be assumed from here on that C2A = C2B = C2. With

this simplification, (13) becomes

m = λ
√
R2/C1

nA = λφ
√

(1−R2) /C2

nB = λ (1− φ)
√

(1−R2) /C2

λ = ky

{√
C1R2 +

√
C2 (1−R2)

}
.


(14)

We can also obtain the second phase sampling fractions fA = nA/mA ≈ nA/ (mφ)

and fB = nB/mB ≈ nB/ (m (1− φ)) at this optimum:

fA = fB =

√
C2

C1

(1−R2)

R2
(15)

So we have equal probability sampling over both subpopulation and non-subpopulation

members.
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We can check numerically for any given set of values of C1/C2, R2, φ, ky and

kuA whether (14) satisfies (10) or not. If it does, then (14) is the optimum. If it

doesn’t, then the constraint is active, and we must go on to the next heading.

4.3 Second Case: (10) is Active

In this case, equality holds in (10), so that m is determined by nA and qA:

m = (nA + qA)φ−1.

The problem then becomes to minimise the cost

C = C1 (nA + qA)φ−1 + C2nA + C2nB + C3AqA + C3BqB

=
(
C1φ

−1 + C2

)
nA + C2nB + constants (16)

with respect to nA and nB , where “constants” refers to terms that do not depend

on nA or nB , subject to constraint (6) which becomes

(nA + qA)
−1
φR2 + n−1

A φ2
(
1−R2

)
+ n−1

B (1− φ)
2 (

1−R2
)

= k−1
y (17)

Notice that the cost coefficient attached to nA in (16) is now C1φ
−1 +C2 rather

than C2. This reflects the fact that when (10) is active, we must screen an

additional φ−1 households for every additional subpopulation unit that we want

in Survey 1. In contrast, when (10) is inactive, the value of m which is optimal

for Survey 1 is large enough that there are more subpopulation units than we

need.

Now we strike a problem, because minimising (16) subject to (17) is no
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longer a Neymann allocation problem. Using Lagrange multipliers, we get:

0 = C1φ
−1 + C2 − λ (nA + qA)

−2
φR2 − n−2

A φ2
(
1−R2

)
0 = C2 − λn−1

B (1− φ)
2 (

1−R2
)

Solving this with respect to nA and nB turns out to involve a quartic equation.

So an analytic solution is not feasible.

Instead, the problem can be solved numerically, by setting up the cost as a

function of nA which is then minimised. For each value of nA, the value of nB

is obtained by numerically solving the constraint (17). Then the cost can be

calculated using (16).

4.4 Adding a Constraint of Equal Probability in Survey 2

when (10) is Active

When (10) is inactive, we saw in Section 4.2 that fA = fB . When the constraint

is active, this turns out not to be the case, as seen in 4.3. What if we decide

that undersampling of subpopulation members is not acceptable in Survey 1?

This leads to an additional constraint, that nA/φ = nB/ (1− φ). Constraint

(17) becomes:

k−1
y = (nA + qA)

−1
φR2 + n−1

A φ2
(
1−R2

)
+
(
nA (1− φ)φ−1

)−1
(1− φ)

2 (
1−R2

)
= (nA + qA)

−1
φR2 + n−1

A φ2
(
1−R2

)
+ n−1

A φ (1− φ)
(
1−R2

)
= (nA + qA)

−1
φR2 + n−1

A φ2
(
1−R2

)
+ n−1

A

(
φ− φ2

) (
1−R2

)
= (nA + qA)

−1
φR2 + n−1

A φ
(
1−R2

)
(18)
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This can be re-expressed as a quadratic equation in nA. It can be solved nu-

merically or analytically. nA and m follow immediately.
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