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Abstract 

 

   We show how to construct nonparametric tests for two factor designs. These tests depend on whether or not 

the factors are ordered. Pearson’s X
2
 statistic is decomposed into components of orders 1, 2, ... . These 

components may be further decomposed, the decomposition depending on the design. If neither factor is 

ordered, the components reflect linear, quadratic etc main and interaction effects. The approach is 

demonstrated with reference to the latin squares design. 
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2
 

 

 

 

1. Introduction 

 

  The approach described here is based on 

components of the Pearson X
2
 test for independence. 

In the first order case they utilise ranks. Tests of 

higher order are available, and these could be 

thought of as being based on generalised ranks. 

  In a limited empirical assessment for the latin 

square design we find that our first order test 

consistently gives superior power to the parametric F 

test and our benchmark nonparametric test, the 

Conover rank transform test (see [3, p.419]). 

  The approach generalises readily to the 

development of multifactor nonparametric tests.  

  In section 2 we construct contingency tables and 

show how Pearson’s X
2
 statistic 

2
PX  may be 

partitioned into components that reflect, for 

example, linear, quadratic and higher order effects. 

The components depend on how many factors are 

ordered. In section 3 we consider no factors ordered, 

and in section 4 at least one factor ordered. Section 5 

gives a brief empirical assessment for the latin 

squares design. 

 
 

2. Decomposition of the Pearson Statistic into 

Linear, Quadratic and Other Effects  
 

  We assume that we have observations xij, i = 1, ..., I 

and j = 1, ..., J, in which i and j are the levels of 

factors A and B respectively. All IJ = n observations 

are ranked and we count Nrij, the number of times 

rank r is assigned to the observation at level i of 

factor A and level j of factor B. For simplicity we 

assume throughout that there are no ties. 

 

2.1 Singly Ordered Tables: Neither Factor Ordered  

  Initially it is assumed that only the ranks are 

ordered. With no ties {Nrij} defines a three-way 

singly ordered table of counts of zeros and ones. As 

in [2] and [4, section 10.2], Pearson’s X
2
 statistic 

2
PX  may be partitioned into components Zuij via 

 

2
PX  = 



  

1

1 1 1

2
n

u

I

i

J

j

uijZ  

 

with Zuij =   }{/ ....1 ji

n

r riju pnpNra 
, in which 

{au(r)} is orthonormal on {pr..} with a0(r) = 1 for r = 

1, ..., n. Here the standard dot notation has been 

used, so that, for example, N...= IJ = n, the number of 

times a rank has been assigned. Formally 
2
PX  also 

includes a term for Pearson’s X
2
 for the unordered 

table formed by summing over r: {N.ij}. However 

this table has every entry one, and X
2
 is zero. We 
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also find that N.i. = J and N..j = I. It follows that p.i. = 

1/I and p.j = 1/J, giving Zuij =   

IJ

r riju Nra
1

 . 

  For u = 1, 2, ..., n – 1 define  
 

SSu = 
 

I

i

J

j

uijZ
1 1

2
 

 

so that 
2
PX  = SS1 + ... + 1nSS ; the SSu give order u 

assessments of factor effects. 

  The {Zuij} may be thought of as akin to Fourier 

coefficients: for each (i, j) pair Zuij is the projection 

of xij into [n – 1] dimensional ‘order’ space, where 

the first dimension reflects, roughly, location, and 

the second reflects, roughly, dispersion, and so. Now 

Z1ij =    / 
1 


n

r rijNr  in which  = (n + 1)/2 

and 2
 = (n

2
 – 1)/12. The linear or location statistic 

is SS1 =  ji ijZ
,

2
1 . As in [4, section 3.4] this is of the 

form of a Kruskal-Wallis test. 

 

2.2 Doubly Ordered Tables: One Factor Ordered 

  Now assume that the first factor is ordered. To 

reflect this change write Nrsi for the number of times 

rank r is assigned to the factor combination (s, i). As 

there are no ties {Nrsi} defines a three-way doubly 

ordered table of counts of zeros and ones. As in [2] 

and [4, section 10.2], Pearson’s X
2
 statistic 

2
PX  may 

be partitioned into components Zuij via 
 

2
PX  = 




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with Zuvj =     j

n

r

I

s rsjvu npNsbra ..1 1
/   

, in 

which {au(r)} is orthonormal on {pr..} with a0(r) = 1 

for r = 1, ..., n and {bv(s)} is orthonormal on {p.i.} 

with b0(s) = 1 for s = 1, ..., I. We find that N...= n, pr.. 

= 1/n, p.i. = 1/I and p.j = 1/J, giving Zuvj = 

  INsbra
n

r

I

s rsjvu /)( 
1 1  

. If for u = 0, 1, 2, 

..., n – 1 and v = 0, 1, ..., I – 1, but not (u, v) = (0, 0), 

SSuv =  

J

j uvjZ
1

2
, we have 

2
PX  =  vu uvS

,
. 

  Analogous to [4, section 6.5] the Z11j are Page test 

statistics at each of the levels of factor B, and the Zuvj 

are extensions of Page’s test statistic. Now SSuv = 

 j uvjZ 2
 gives an aggregate assessment over the 

whole table of order (u, v) effects, generalised 

correlations in the sense of [5]. As above, the 

aggregation of all these order (u, v) effects is 
2
PX . 

 

2.3 Completely Ordered Tables: Both Factors 

Ordered 

  Finally assume that both factors are ordered. To 

reflect this change write Nrst for the number of times 

rank r is assigned to the factor combination (s, t). 

With no ties {Nrst} defines a three-way completely 

ordered table of counts of zeros and ones. As in [1] 

and [4, section 10.2], Pearson’s X
2
 statistic 

2
PX  may 

be partitioned into components Zuvw via 
 

2
PX  = 
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with Zuvw √n =        

n

r

I

s

J

t rstwvu Ntcsbra
1 1 1

)( , 

in which {au(r)} is orthonormal on {pr..} with a0(r) = 

1 for r = 1, ..., n, {bv(s)} is orthonormal on {p.s.} 

with b0(s) = 1 for s = 1, ..., I and {cw(t)} is 

orthonormal on {p..t} with c0(t) = 1 for t = 1, ..., J.  

  In our previous notation SSuvw = Zuvw for u = 0, 1, 2, 

..., n – 1 and v = 0, 1, ..., I – 1, and w = 0, 1, ..., J – 1, 

but not (u, v, w) = (0, 0, 0). Thus 
2
PX  =  wvu uvwS

,,
. 

The SSuvw may be thought of as further extensions of 

the Page test statistic, this time to three dimensions. 

The SSuv0, SSu0w and SS0vw are the familiar two-

dimensional generalised Page test statistics as, for 

example, in [4, section 6.5 and Chapter 8]. 
 

 

3. Factors Not Ordered 

 

  Recall now that in the two factor analysis of 

variance without replication with observations yij, i = 

1, ..., I and j = 1, ..., J, the total sum of squares SSTotal 

=   
i,j ij yy

2

..  may be arithmetically partitioned 

into sum of squares due to factor A, namely SSA = 

  
i i yyJ

2

... , due to factor B, namely SSB = 

  
j j yyI

2

... , and a residual or interaction sum 

of squares SSAB =   
i,j jiij yyyy

2

.... . Thus  

 

SSTotal = SSA + SSB + SSAB. 
 

Here .iy  = Jy
j ij /  etc as usual. 

  For each u = 1, 2, ..., n – 1 put yij = Zuij = 

  

n

r riju Nra
1

  in SSTotal. The order u factor A sum 

of squares is SSuA = )/(/
,

2
..

2
. IJZJZ 

ji ui ui   . As 

in Rayner and Best (2001, section 3.4), SS1A is the 
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Kruskal-Wallis test statistic for factor A, and for 

general u the SSuA are the component test statistics 

discussed there. Clearly the SSuB are the parallel 

generalised Kruskal-Wallis test statistics for factor 

B, while the SSuAB are nonparametric tests for 

generalised interaction effects. For example, for u = 

2, SS2AB assesses whether or not the quadratic 

(dispersion) factor A effects are the same at different 

levels of factor B.  

 

Examples. 

  The completely randomised design can be accessed 

either by combining SSB and SSAB or simply 

partitioning as in the one factor ANOVA: SSTotal = 

SSA + SSError. However it is done, the usual Kruskal-

Wallis test statistic and its extensions are obtained. 

  In the randomised block design factor A can be 

taken to be treatments and factor B replicates. Of 

course there is no interest in testing for a replicates 

effect or a treatment by replicates interaction effect. 

The treatment effect test is not the Friedman test, as 

observations are ranked overall, not merely on each 

block. From an overall ranking the ranks on each 

block may be derived, so there is more information 

assumed in this approach. This could result in more 

power when the test is applicable. In some situations 

only ranks within blocks are available. 
 

 

4. At least One Factor Ordered 

 

  Suppose now that the first factor is ordered. The 

the Zuvj =   INsbra
n

r

I

s rsjvu /)( 
1 1  

, are 

generalised Page test statistics at each level of factor 

B. As in the Happiness example in [4, pp. 147 and 

pp. 188], 
2

PX  may be partitioned into meaningful 

components. An alternative is to sum over the levels 

of factor B and obtain Zuv., generalised Page test 

statistics aggregating over factor B. This is 

appropriate when factor B is replicates, as in the 

completely randomised design, or blocks, as in the 

randomised block design 

  If both factors are ordered 
2
PX  is partitioned by the 

SSuvw of section 2.3. These are new extension of the 

Page test, this time to three dimensions. 

 
 

5. Latin Squares 
 

  The parametric t × t latin square design partitions 

the total sum of squares into sum of squares of 

treatments, rows and columns and error. For the 

nonparametric analysis we assume that neither rows 

nor columns are ordered and investigate parallel 

partitions of the total sum of squares. 

  We count Nrjk, the number of times rank r is 

assigned to the treatment in row j and column k, with 

r = 1, … , t
2
, j, k = 1, … , t. Note that treatment i, i = 

1, … , t, occurs in cells (j, k) specified by the design. 

As long as we know any two of the treatment 

applied, the row in which it was applied and the 

column in which it was applied, we know the other.  

  Initially suppose that treatments are unordered, so 

that only the ranks are ordered. With no ties {Nrjk} 

defines a three way singly ordered table of counts of 

zeroes and ones.  

  As in section 2, 
2
PX  = SS1 + ... + 

12t
SS  in which  

 

SSu = 
 

t

j

t

k

ujkZ
1 1

2
 = t

2
 for all u  

with Zujk =  


2

1

 
t

r

rjku Nra . 

 

The factor A test statistic of order u = 1, ..., t
2
 – 1, 

can be denoted by SSuA, a generalised Kruskal-

Wallis test statistic. By letting the factors be in turn 

rows and columns, columns and treatments, and 

treatments and rows, we are able to show that  
 

3 SSu = 2 SSutreatments + 2 SSurows + 2 SSucolumns 

+ SSutreatments×rows + SSutreatments×columns + SSurows×columns. 
 

In most applications it is enough to know that SSu = 

SSutreatments + residual, but it is interesting to know 

that, parallel to the parametric partition, the residual 

could be used to assess rows, columns and 

interactions between treatments, rows and columns. 

However, unlike the parametric case, this analysis 

applies for any order. We recognise that in most 

applications few users would be interested in 

treatment effects beyond orders two or three. 

 

Empirical Study 

  We now briefly assess the power properties of 

some of the tests constructed. Treatments tests of 

orders one and two, with test statistics denoted by 

SS1T and SS2T respectively, are considered. We also 

consider tests formed from the table of counts {Nrsi} 

where the second category is treatments, assumed to 

be ordered. Then test statistics Suv are constructed 

from {Nrs.}, particularly the Page test based on S11 

and the umbrella test based on S12. These will be 

compared with the parametric F test (denoted by F) 

and the Conover rank transform test (denoted by 

CRT) that ranks the data and applies a parametric F 

test to the ranks.  
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  Only the 5 × 5 Latin square is considered, and 

rather than use asymptotic critical values 5% critical 

values are found using random permutations. The 

critical value for SS1T is 8.9059 while that for the 

CRT test was 3.3642. Compare these with the 

asymptotic critical values of 9.4877 using the 
2
4  

distribution for the SS1T test and 3.2592 using the 

F4,12 distribution for the CRT test. Not surprisingly 

these asymptotic critical values aren’t practical for a 

table of this size. However the critical value for the 

parametric F test is exact. 

  All simulations relate to 5% level tests with sample 

sizes of 50, and are based on 100,000 simulations. 

The error distributions are Normal, exponential, 

uniform (0, 1), Cauchy (t1), t2, t3 and lognormal. 

  Using the simulated critical values we found the 

test sizes given in Table 5 below. They are 

remarkably close to the nominal significance level, 

as befits nonparametric tests. However the 

parametric F test fared less well, often having test 

size less than 5%. This will mean the corresponding 

powers will be less than if the nominal level was 

achieved. Nevertheless, this is how the test would be 

applied in practice. 

  The critical values used in Table 5 were also used 

to estimate powers in subsequent tables. These 

powers use the model Yijk = µ + i + j + k + Eijk but 

with j = k = 0 for all j and k in this study. The 

uniform error distribution doesn’t appear in Tables 6 

to 8 as all powers are 1.00. 

 

 

Table 5. Test sizes for competitor tests for various 

error distributions.  

Error distn CRT SS1T F SS2T S11 S12 

Normal 0.050 0.049 0.050 0.050 0.051 0.049 

Expon 0.050 0.050 0.040 0.049 0.050 0.051 

U(0, 1) 0.052 0.052 0.055 0.049 0.052 0.051 

Cauchy (t1) 0.049 0.049 0.017 0.050 0.051 0.051 

t2 0.049 0.050 0.031 0.050 0.052 0.051 

t3 0.050 0.050 0.041 0.050 0.051 0.051 

Lognormal 0.049 0.049 0.032 0.049 0.052 0.050 

 

Table 6. Powers for competitor tests for various 

error distributions with linear alternatives i = (–1, –

0.5, 0, 0.5, 1). 

Error distn CRT SS1T F SS2T S11 S12 

Normal 0.62 0.69 0.64 0.07 0.91 0.02 

Expon 0.78 0.83 0.68 0.22 0.96 0.01 

Cauchy (t1) 0.19 0.22 0.05 0.07 0.40 0.04 

t2 0.32 0.37 0.20 0.07 0.62 0.03 

t3 0.40 0.45 0.32 0.06 0.72 0.02 

Lognormal 0.54 0.59 0.29 0.22 0.84 0.02 

 

Table 7. Powers for competitor tests for various 

error distributions with quadratic alternatives i = (1, 

0, –2, 0, 1).  

Error distn CRT SS1T F SS2T S11 S12 

Normal 0.94 0.97 0.96 0.34 0.01 0.98 

Expon 0.93 0.95 0.94 0.48 0.01 0.99 

Cauchy (t1) 0.34 0.38 0.10 0.11 0.03 0.52 

t2 0.59 0.66 0.44 0.16 0.03 0.77 

t3 0.71 0.78 0.65 0.19 0.02 0.86 

Lognormal 0.74 0.78 0.57 0.43 0.01 0.91 

 

Table 8. Powers for competitor tests for various 

error distributions with complex alternatives i = 

(0.5, –0.5, 0, 0.5, –0.5). 

Error distn CRT SS1T F SS2T S11 S12 

Normal 0.27 0.31 0.28 0.04 0.07 0.04 

Expon 0.46 0.52 0.33 0.11 0.09 0.03 

Cauchy (t1) 0.11 0.12 0.03 0.05 0.06 0.05 

t2 0.16 0.17 0.09 0.05 0.07 0.05 

t3 0.18 0.21 0.14 0.05 0.07 0.05 

Lognormal 0.30 0.34 0.13 0.15 0.08 0.03 

 

  These tables show that even when normality holds, 

the test based on SS1T is slightly superior to the 

parametric F test, and is clearly superior when 

normality doesn’t hold. This linear effects test is also 

uniformly slightly superior to the Conover rank 

transform test. This is not due to a size difference as 

can be seen from Table 5. The Page and umbrella 

tests perform well when the alternative is 

constructed to reflect their designed strengths, but 

both are sometimes biased: their power is less than 

their test size. The performance of the test based on 

SS2T is disappointing, but perhaps only because 

powers have not been given for alternatives 

constructed to reflect their designed strengths. 
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