SimReef and ReefGame: gaming for integrated reef research and management

Deborah Cleland
Australian National University, Deborah.Cleland@anu.edu.au

Anne Dray
Australian National University

Pascal Perez
University of Wollongong, pascal@uow.edu.au

Rollan Geronimo
Conservation International Quezon City Philippines

Follow this and additional works at: https://ro.uow.edu.au/smartpapers

Part of the *Engineering Commons*, and the *Physical Sciences and Mathematics Commons*

Recommended Citation

Cleland, Deborah; Dray, Anne; Perez, Pascal; and Geronimo, Rollan, "SimReef and ReefGame: gaming for integrated reef research and management" (2010). *SMART Infrastructure Facility - Papers*. 3.

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
SimReef and ReefGame: gaming for integrated reef research and management

Abstract
As threats to coastal and ocean systems grow in scale and complexity, the calls for new approaches to research and management grow in volume. The Modeling and Decision Support Working Group (MDSWG) of the CRTR Program has developed two participatory gaming tools that address the need for integrative approaches to coral reef management. SimReef is a regional model and role-play game aimed at policy makers and industry representatives. It simulates coastal development trajectories and trade-offs between environmental, social and economic concerns. ReefGame is a local-level model and board game that helps local people and reef managers explore interactions between livelihoods, reefs and fisheries. We have used these tools successfully in participatory workshops in the Philippines and Mexico. These experiences demonstrate that using games with stakeholders can be a powerful way to educate and involve the public in coral reef management.

Keywords
management, gaming, integrated, reef, reefgame, research, simreef

Disciplines
Engineering | Physical Sciences and Mathematics

Publication Details

This book chapter is available at Research Online: https://ro.uow.edu.au/smartpapers/3
Building capacity in coral reef science: An anthology of CRTR scholars’ research 2010
Acknowledgements

This anthology has been made possible through the continued support of the CRTR Program’s Executive Officer, Melanie King. Many thanks to Melanie for her tireless efforts in fostering links within the CRTR scholar network. Thanks also to Gabrielle Sheehan and Mark Paterson of Currie Communications for encouraging the scholar group to communicate their research findings in a wide variety of formats.

Thank you to the Chairs of the CRTR Working Groups and Centres of Excellence for their involvement with the CRTR Future Leaders’ Forum in 2007, and for their critical role in supporting the research programs of individual scholars. Our sincere appreciation also goes to all the other presenters and facilitators at the Future Leaders’ Forum, for their dedication, inspiration, vision and leadership. Thanks especially to Andy Hooten, for encouraging us to think of CRTR as our research ‘family’ and reminding us that there is life outside academia.

Finally, thanks go to Professor Peter Sale (Chair, Connectivity Working Group) for contributing the preface to this anthology and to Professor Roger Bradbury (Chair, Modeling and Decision Support Working Group) for initially suggesting the idea for an anthology of CRTR scholars’ research.

Editors: Deborah Cleland, Jess Melbourne-Thomas, Melanie King, Gabrielle Sheehan.

Cover photos: (top left) Inspecting the nets, Bolinao Reef Flat, Philippines (Photo: M King); (top right) Jess Melbourne-Thomas recording research data (Photo: M Flavell); (bottom) Panda clownfish and three-spot damselfish, Schumann Island, Papua New Guinea (Photo: S Planes); (middle left) Courtney Couch and Mark Dondi Arboleda researching coral disease.
Contents

Preface \(\text{iii}\)

The Future Leaders Network \(\text{iv}\)

Introduction \(\text{v}\)

Linking coral reef research across nationalities and disciplines

1. Understanding local-scale ecological processes

Suzanne N. Arnold

Coral survivorship in the gardens of good and evil \(\text{1}\)

Jacqueline L. Padilla Gamiño

Coral romance: exploring coral reproduction with a field perspective \(\text{10}\)

Morgan Mouchka & Courtney Couch

The effects of aquaculture effluent on *Porites cylindrica* innate immune function \(\text{13}\)

Adán Guillermo Jordán-Garza

Is the thin dark line sign on *Montastraea cavernosa* associated with tissue loss and caused by the presence of cyanobacteria? \(\text{21}\)

Tak Fung

Modeling reefs at a local scale: the elements of design \(\text{27}\)

2. Reef dynamics and management actions at regional scales

Isabel Porto & Ainhoa Leon Zubillga

Regional scale of genetic connectivity among *Acropora palmata* and *Montastraea faveolata* populations \(\text{34}\)

Mohammed Suleiman Mohammed

Preliminary investigation of coral reef diseases in Tanzania, East Africa \(\text{35}\)

Eileen Peñafior

Sea-surface temperature and thermal stress in the Coral Triangle over the past two decades \(\text{42}\)

Mark Vergara et al.

Status of coral reef research in the Bolinao-Anda reef complex, northwestern Philippines \(\text{48}\)

Jess Melbourne-Thomas

A decision support tool for managing coral reefs at regional scales \(\text{59}\)

3. New tools for understanding and managing coral reef systems

Narinratana Kongjandtre

Insights from the genus *Favia* to overcome taxonomic uncertainties in coral \(\text{82}\)

Angela M. Mojica & Eva Salas

Connectivity: a snapshot on techniques and the role of the CRTR Program in the research field \(\text{83}\)

Pablo Saenz-Agudelo

Estimating connectivity in marine populations: an empirical evaluation of assignment tests and parentage analysis under different gene flow scenarios \(\text{89}\)

Kirk Kilfoyle

Experimental methods of coral reef restoration: implementing a standardized module intervention and monitoring program in Mexico \(\text{96}\)

Chris M. Roelfsema

A web based toolkit for using remote sensing to map and monitor marine environments \(\text{109}\)

Deborah Cleland

SimReef and ReefGame: gaming for integrated reef research and management \(\text{117}\)

Georgina Gurney

Integrated models of natural and human systems: a critical component of environmental management \(\text{123}\)

Spotlight on:

Mark Dondi Arboleda \(\text{8}\)

Ronald Villanueva \(\text{9}\)

Maria Vanessa Baria \(\text{19}\)

Kareen Vicentuan-Cabaitan \(\text{20}\)

Scholars at the International Coral Reef Symposium \(\text{40}\)

Patrick Cabaitan \(\text{41}\)

Dexter dela Cruz \(\text{46}\)

Victor Ticzon \(\text{47}\)

Rollan Geronimo \(\text{94}\)

Rachel Ravago-Gotanco \(\text{95}\)

Mark Vergara \(\text{120}\)

Scholars in the news

Effective reef governance: Southeast Asia \(\text{32}\)

Sensing the complexity of habitat \(\text{33}\)

Building community capacity \(\text{75}\)

Lessons in coral culture \(\text{76}\)

Keeping watch in the Caribbean \(\text{116}\)

Patterns of Spiny Lobster recruitment \(\text{130}\)

Nong sets sights on Thai corals \(\text{131}\)
Deborah Cleland

SimReef and ReefGame: gaming for integrated reef research and management

Deborah is a PhD student at the Fenner School of Environment and Society at the Australian National University. She graduated with a BA/BSc (Hons) from the ANU after completing a thesis focusing on using visual tools, including participatory models and board games, for coral reef and coastal management in the Philippines. Through her PhD, Deborah will continue to examine the utility and potential benefits of using creative techniques to explore alternative livelihood options and locally-based stewardship arrangements in artisanal reef fisheries, as well as the nexus between art and science.
SimReef and ReefGame: gaming for integrated reef research and management
Deborah Cleland¹, Anne Dray², Pascal Perez³, Rollan Geronimo⁴
¹ Fenner School of Environment and Society, Australia National University, Canberra
² Research School of Pacific and Asian Studies, Australia National University, Canberra
³ Research School of Pacific and Asian Studies, Australia National University, Canberra
⁴ Marine Science Institute, University of the Philippines

Abstract
As threats to coastal and ocean systems grow in scale and complexity, the calls for new approaches to research and management grow in volume. The Modeling and Decision Support Working Group (MDSWG) of the CRTR Program has developed two participatory gaming tools that address the need for integrative approaches to coral reef management. SimReef is a regional model and role-play game aimed at policy makers and industry representatives. It simulates coastal development trajectories and trade-offs between environmental, social and economic concerns. ReefGame is a local-level model and board game that helps local people and reef managers explore interactions between livelihoods, reefs and fisheries. We have used these tools successfully in participatory workshops in the Philippines and Mexico. These experiences demonstrate that using games with stakeholders can be a powerful way to educate and involve the public in coral reef management.

Introduction
Globally the health of coral reefs is in decline, largely due to human activity (Pandolfi et al. 2005). Key drivers include climate change, overfishing, tourism, and nutrient and sediment flows from agriculture, mining and towns.

Models are often used in integrated coastal management, to aid understanding, develop scenarios, and explore policy options (Siebenhuner and Barth 2005). Here, we combine models with role-playing games, bringing stakeholders together in a non-confrontational, playful environment (Lynam et al. 2002). The players are given control over certain aspects of a model, so they can make their own decisions and explore different outcomes. Role-playing helps participants (including “experts”) to understand and experience the pressures and constraints felt by others, and allows them to “see” new ways of thinking about a problem (D’Aquino et al. 2003).

The MDSWG has developed two participatory computer games, SimReef and ReefGame, which have been used in workshops in Mexico and the Philippines.
Tourism and coral reefs in Quintana Roo

The arrival of ever-growing numbers of tourists to Quintana Roo, on the Caribbean coast of Mexico, has had a serious impact on the Mesoamerican Barrier Reef system. From about 1975, a wave of mass tourism development has spread outward from the tourist centre Cancun, with annual tourist arrivals now numbering more than 6 million (Daltabuit et al. 2006). Across the state, damage to the reefs caused by human activities has interacted synergistically with natural disturbances, such as hurricanes and coral disease, contributing to the widespread degradation of the reefs (Harborne et al. 2001).

Many industries, communities and families in Quintana Roo are wholly or partly dependent on the ecosystem services provided by reefs, such as coastal protection (Iglesias-Prieto 2009). These groups influence the outcomes of reef management proposals, supporting those they agree with, and blocking those they do not. Improving reef management therefore requires bringing these groups together to create partnerships, share knowledge and, most importantly, negotiate the necessary change in current practices to protect the future of the reefs and the local economy.

SimReef coupled model and role-play game

‘SimReef’ is a model and coupled role-play game that captures the regional-scale drivers of social and economic change triggered by tourism development in Quintana Roo. The model was kept as simple as possible, so stakeholders could contribute to scenario development, without being presented with a “finished product”.

Each group interacts with the SimReef interface, shown on a projector screen. The interface is a schematic representation of the Quintana Roo coastline, showing the location of key ecosystems and human settlements (Figure 1).

Figure 1. Sim Reef Interface

Green = forest, blue = open sea, brown = urban, light blue = lagoon, dark blue = fringing reef, teal = seagrass, pink = temples, grey = cenotes (fresh water holes), pale yellow = scrub and open land, dark yellow = agriculture

The SimReef role-play game mimics real-life negotiation patterns, whilst maximising interactions between groups. The roles represent four major interest groups in Quintana Roo – conservation agencies (public and private), tourism, fisheries and the government (shown as circles in Figure 2 and Figure 3). Each group is given simple goals to structure play and aid strategy formation (indicated in brackets in Figure 2 and Figure 3). For example, the tourism industry’s goal is profitability, measured by the income of resorts over each time step.
3. New tools for understanding and managing coral reef systems

Figure 2. The four roles and their goals, inputs and outputs

The above diagrams illustrate the four roles and their inputs/outputs, as represented in the SimReef model and role-play game. Positive and negative feedback relationships are marked with +/- signs. Black circles represent the roles discussed in text. Dotted arrows and bold text represent the decisions each role was responsible for (e.g. the Conservation Agency decided the size and location of protected areas).

Every round each group in the role-play game makes decisions about the use of the resources under their control (linked with red arrows in Figures 2 and 3). For example, the tourism role decides the average wage and how many resorts to develop, whilst the fishing role establishes (legal) fishing effort. These decisions then have flow-on environmental and social effects, measured by indicators like ‘pollution’ and ‘public protest’. In turn, these indicators affect the outcomes for the government and the conservation agency. Each group must reach a consensus on their decisions, and negotiate access to funds and approvals through the government. For example, the conservation agency has to obtain permission from the government to establish new protected areas. After reaching consensus, the final decisions are coded into the model. Facilitators then present the results, including whether each group is meeting their established goals.
3. New tools for understanding and managing coral reef systems

Figure 3. Complete causal loop diagram

The above diagram illustrates the interlinking of the four roles and their inputs/outputs introduced in figure 2. Positive and negative feedback relationships are marked with +/- signs. Black circles represent the roles discussed in text. Red lines represent the decisions made by each entity.

SimReef workshop

SimReef was played at a participatory workshop in Akumal, Quintana Roo, in October 2005. A group of 15 local people participated, representing the federal government’s conservation agency, social and marine scientists, a local environmental NGO and an eco-tourism operator. No representatives from the fishing industry were present, although they had been invited. Participants were divided into the four role-play groups, each with a facilitator. Four rounds of the game were played, representing four years. Whilst the model was updated with each round’s decisions, the underlying data and assumptions for each of the model’s components were presented, so the participants could comment on their perception of the validity of the assumptions, and their recommendations for improving the model. Finally, participants were asked to reflect on the game/model, and its potential for further use as a management tool both in the Quintana Roo context and more generally.

Workshop outcomes

SimReef in Mexico helped to foster relationships and encourage interaction, learning and exchange between researchers and local participants. Introducing fun and play to the participatory context had a particularly positive impact on stakeholder engagement, pointing to some potential for researchers battling stakeholder fatigue.

However, the positive potential of SimReef did not overcome the problems caused by our lack of contact with local stakeholders prior to arriving in Mexico. The outcomes of the workshop were not connected to ongoing projects nor effectively linked to management priorities. Commitment from the individuals and institutions that possess the power to change the behaviours and activities that drive reef degradation is essential. Without this, models and participatory processes in general cannot engage effectively with the structural barriers to improved marine management. These lessons were used to improve design and implementation of the MDSWG’s second participatory modeling experiment.
3. New tools for understanding and managing coral reef systems

ReefGame, Bolinao, the Philippines

Fishing and reefs in Bolinao

Overfishing is the overwhelming issue for reef management in Bolinao. Falling catches and catch per unit effort are two indicators that target species are close to collapse. Fishing effort needs to be radically reduced if fish stocks are to recover (Meñez et al. 1991; McManus et al. 1992; Licuanan et al. 2006). The burgeoning aquaculture industry, upper-catchment clearing, chemical agriculture and domestic waste streams are also harming the health of the marine ecosystem (Talaue-McManus et al. 2000). Together, these factors mean that the region’s growing fisher population is relying on a dwindling resource base that can no longer support the needs of their families. However, limited funds and corruption in the government have meant that little effective management action has been taken (Graham and Sol 2004).

ReefGame coupled model and role play game

ReefGame aims to help fishers understand how overfishing is harming both their livelihoods and the reef, and to start discussions about what could be done. At the same time, we hoped to increase understanding of the fishers’ behaviour and livelihood choices as their catches declined.

Unlike SimReef, where users interact directly with the computer interface, ReefGame is primarily a board game. Participants playing in pairs are given a particular fishing identity – with a boat, a family size and ongoing expenses that they have to pay each round. There is also a role for a banker/fish buyer.

Two identical game boards represent a coastal area with an offshore island, made up of sea and land cells and bearing a schematic resemblance to the coast of Bolinao (see figures 4 and 5). Habitat cards are distributed on the sea cells, showing where mangrove, seagrass, coral-dominated reef and algae-dominated reef are located. Designated land cells have livelihood icons, initially one for each of the different activities available (e.g. carpentry and taxi-driving).

Half the participants play around each board. Using both boards means that groups are kept small and different conditions and scenarios can be applied to each. Scenarios include Marine Protected Area implementation, introduction of different livelihoods and migration possibilities, and natural disasters.

In each round of the game, each pair either goes fishing (by moving their token to any sea cell) or works for a wage in another occupation (the corresponding land cell).

The computer model accompanying ReefGame calculates each pair’s catch and income. Fishers receive fish tokens that represent catch biomass. Fish tokens are swapped for money tokens, which are used to track each pair’s income (or debt). After players receive their gross earnings, the banker collects family expenses from each player.

ReefGame workshop

Twenty fishers played ReefGame at a one-day participatory workshop in Bolinao, the Philippines in September 2007. We have also used ReefGame as an educational tool in undergraduate and postgraduate workshops at different venues around Australia and the Philippines.
3. New tools for understanding and managing coral reef systems

Workshop outcomes

The Philippines workshop demonstrated that models and games are powerful community education and outreach tools, eliciting rich responses and discussion from participants. Facilitators commented that workshop attendees interacted enthusiastically and naturally with the game and each other. This is in stark contrast to interview and focus groups they had experienced, where ‘information extraction’ was the sole purpose, creating a stilted one-way interrogation. Participants were also pleased about experiencing something different from the ‘typical’ workshop setting with butcher’s paper and PowerPoint presentations. Most also identified that the workshop had helped them build relationships with peers and learn about reef function and management.

Further research

Together with an extended team based at the University of the Philippines, MDSWG members secured funding from the David and Lucille Packard Foundation through the Ecosystem Based Management (EBM) Tools Network to run participatory modeling workshops in 5 different towns throughout the Philippines in 2010. These workshops will have a strong emphasis on multi-sectoral integration to help find sustainable alternative and supplementary livelihoods for the artisanal fishers who are dependent on reefs. Thus, we will continue the approach initiated with SimReef and continuing with ReefGame in using models and games to outcomes of participatory modeling workshops for people and management.

Conclusion

SimReef and ReefGame have very different foci and target audiences, but both were able to elicit creative and interactive responses from key stakeholders. Thus far, gaming has been a valuable tool to build relationships and conduct social research. Moreover, it shows promise as a decision support tool for marine managers. The SimReef workshop demonstrated the dangers of neglecting the traditional concerns of participatory research, particularly local power relationships and the integration of the researchers with the local community and decision-making processes. However, we have drawn a number of important lessons from these experiences, and have incorporated stronger and more direct links to management decisions in our current work.

Acknowledgements

Deborah Cleland would like to thank all participants of SimReef and ReefGame workshops most sincerely for their time and energy. Abbie Trinidad (Conservation International) and Portria Alino (Marine Science Institute, University of the Philippines) provided expert advice and support in the development of ReefGame and also facilitated the Bolinao workshop. This work was largely completed as part of Deborah Cleland’s honours research, supervised by David Dumaresq, convenor of the Human Ecology Program, Fenner School of Environment and Society, ANU. Aspects of this research were presented at the International Coral Reef Symposium in Fort Lauderdale, USA in 2008 and the World Oceans Conference in Manado, Indonesia in 2009. Some material from this paper has also been adapted from a paper by Cleland et al., REEFGAME: exploring the dynamics of subsistence fishing communities, submitted to Simulation and Gaming in September 2009.

References

Iglesias Prieto R (2009) Groundwater pollution and the importance of coral reefs in the protection of the coastal zone The Fifth GEF Biennial International Waters Conference, Cairns, Australia

Meñez LAB, McManus LT, Jimenez JR, Rivera CA, Concepcion J, Luna Cz (1991) Survey of the coral reef resources of the Western Lingayen Gulf, Philippines ICLARM

