University of Wollongong
Browse

Transition metal sulfide and phosphide for high performance lithium and sodium storage

Download (6.6 MB)
thesis
posted on 2024-11-12, 13:46 authored by Zhe Hu
The ever-growing demand for electrical energy storage (EES) devices is creating great opportunities. Especially for the rechargeable ion batteries, great success has been achieved during the last two decades. Since the 1990s, the lithium ion batteries (LIBs) have been commercialized and come to dominate the market owing to their high safety, stability, and capability of storing and converting clean energy to provide a constant power supply. For them to acquire high energy density and improved cycling performance, however, modification and new designs for electrode materials are still a task for researchers. In the meanwhile, due to limited lithium resources, it is desirable to find an alternative for next generation EES devices. Sodium ion batteries (SIBs) have emerged as one of the most promising candidates because sodium containing compounds are abundant and have cheap raw materials. Compared to the Li-ion battery system, sodium possesses a larger ionic radius (1.06 Å for Na+ versus 0.76 Å for Li+) and about 300 mV higher reduction potential than lithium. In lithium containing compounds, lithium can exist in octahedral or tetrahedral coordination. Sodium rarely has the tetrahedral coordination but prefers octahedral and prismatic coordination...

History

Year

2019

Thesis type

  • Doctoral thesis

Faculty/School

Institute for Superconducting and Electronic Materials

Language

English

Disclaimer

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC