University of Wollongong
Browse

The influence of dielectric screening on bimolecular recombination in binary and ternary organic solar cells

Download (10.66 MB)
thesis
posted on 2024-11-12, 09:28 authored by Guanran Zhang
Semiconducting polymer-based solar cells (PSCs) have attracted great interest due to its potential for manufacturing at low cost and large quantity. While the performance of PSCs has significantly improved in the past twenty years, the state-of-the-art efficiency around 12 % is still much lower than the theoretical efficiency limit, which is above 31%. One of the major bottlenecks to PSC efficiency is bimolecular recombination, which limits the active layer thickness and thus sunlight harvesting of the solar cell. Reduced bimolecular recombination, in which the bimolecular recombination rate is one to three orders of magnitude lower than predicted by a model based on Langevin theory, has been shown to have beneficial effects most notably allowing large fill factors at large active layer thicknesses. Reduced recombination has been observed only in a few confirmed cases of conjugated polymer / fullerene blends. Initially, this study was motivated to find additional examples of material systems with reduced recombination in order to establish general design guides for new high-performance materials.

History

Year

2017

Thesis type

  • Doctoral thesis

Faculty/School

School of Chemistry

Language

English

Disclaimer

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Usage metrics

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC