University of Wollongong
Browse

Scalable Hierarchical Gaussian Process Models for Regression and Pattern Classification

Download (13.06 MB)
thesis
posted on 2024-11-12, 14:01 authored by Thi Nhat Anh Nguyen
Gaussian processes, which are distributions over functions, are powerful nonparametric tools for the two major machine learning tasks: regression and classification. Both tasks are concerned with learning input-output mappings from example input-output pairs. In Gaussian process (GP) regression and classification, such mappings are modeled by Gaussian processes. In GP regression, the likelihood is Gaussian for continuous outputs, and hence closed-form solutions for prediction and model selection can be obtained. In GP classification, the likelihood is non-Gaussian for discrete/categorical outputs, and hence closed-form solutions are not available, and approximate inference methods must be resorted.

History

Year

2019

Thesis type

  • Doctoral thesis

Faculty/School

School of Electrical, Computer and Telecommunications Engineering

Language

English

Disclaimer

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC