posted on 2024-11-12, 14:01authored byThi Nhat Anh Nguyen
Gaussian processes, which are distributions over functions, are powerful nonparametric tools for the two major machine learning tasks: regression and classification. Both tasks are concerned with learning input-output mappings from example input-output pairs. In Gaussian process (GP) regression and classification, such mappings are modeled by Gaussian processes. In GP regression, the likelihood is Gaussian for continuous outputs, and hence closed-form solutions for prediction and model selection can be obtained. In GP classification, the likelihood is non-Gaussian for discrete/categorical outputs, and hence closed-form solutions are not available, and approximate inference methods must be resorted.
History
Year
2019
Thesis type
Doctoral thesis
Faculty/School
School of Electrical, Computer and Telecommunications Engineering
Language
English
Disclaimer
Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.