posted on 2024-11-12, 12:39authored byHelani D Kottage
Multiple Imputation (MI) is a technique that imputes a set of plausible values for each missing item using an imputation model. An imputation model predicts a value for the missing item given the observed data and should be compatible with any model that is fitted to the multiply imputed data which is known as the substantive analysis model. To hold the compatibility, the imputation model has to capture the complexities in the substantive analysis model such as the structure of the data set and complex terms (higher order, interaction) considering the type of incomplete variable and the number of incomplete variables in the data set. In this thesis, the application of MI for handling missing values in a set of level-1 categorical variables in a two-level data structure where the data can be fitted with a random intercept substantive analysis model is empirically investigated. Simulation studies considering the missing data rate, the number of clusters and the cluster sizes are based on data generated from a real multilevel educational data set.
History
Year
2020
Thesis type
Doctoral thesis
Faculty/School
School of Mathematics and Applied Statistics
Language
English
Disclaimer
Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.