University of Wollongong
Browse

Direction of Arrival Estimation Using Sparse Signal Recovery Techniques

Download (1.67 MB)
thesis
posted on 2024-11-12, 13:10 authored by Yiwen Mao
Direction-of-arrival (DOA) estimation finds numerous applications in various areas such as acoustics, radar and wireless communications. Recently, the research on DOA estimation has been advanced thanks to the rapid development of compressive sensing (CS) techniques. By exploiting the sparsity of signal sources in the spatial domain, CS-based DOA estimation has emerged as a promising approach especially in the case of a limited number of snapshots. However, due to the use of a large overcomplete dictionary obtained from a predefined grid, CS-based DOA estimation methods normally su er from high computational complexity due to involved matrix inversion and the grid mismatch problem. To address the grid mismatch problem, some methods, in particular sparse Bayesian learning (SBL) based ones, have been developed in the literature, which however result in higher complexity, hindering their applications. The objective of this thesis is to develop more e cient DOA methods using sparse signal recovery techniques.

History

Year

2021

Thesis type

  • Doctoral thesis

Faculty/School

School of Electrical, Computer and Telecommunications Engineering

Language

English

Disclaimer

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC