University of Wollongong
Browse

Design and fabrication of solid nitrogen cooled MgB2 based persistent magnet for MRI application

Download (11.39 MB)
thesis
posted on 2024-11-11, 23:30 authored by Dipakkumar J Patel
Physicians and surgeons rely critically on magnetic resonance imaging (MRI) scans to diagnose and treat critical injuries and medical conditions. In an MRI system, high, stable (<0.1 ppm h-1), and uniform (≤10 ppm in 50 cm diameter of spherical volume) magnetic fields are required for obtaining high-resolution images of the human body. The unique possibilities for the operation of superconducting magnets (i.e., persistent-mode) make them ideal for MRI application. Thus, in the majority of commercially available MRI systems, superconducting persistent magnets based on niobium titanium (NbTi) have been used. These magnets, which are cooled in an expensive liquid helium (LHe) bath at 4.2 K, cannot currently be avoided. Thus, the high operation costs of MRI systems obstruct their extensive use in developing and underdeveloped countries.

History

Year

2016

Thesis type

  • Doctoral thesis

Faculty/School

School of Mechanical, Materials and Mechatronic Engineering

Language

English

Disclaimer

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC