University of Wollongong
Browse

Creep-fatigue behaviour and life prediction

Download (10.19 MB)
thesis
posted on 2024-11-11, 11:21 authored by Tarun Goswami
This thesis describes an investigation into the creep-fatigue behaviour and life prediction for high temperature materials. The methodology adapted in this research was not experimental, but, analytical using data compiled from several sources. High temperature low cycle fatigue (HTLCF) data generated internationally on 0.5Cr-Mo-V, ICr-Mo-V, 1.25Cr-Mo, 2.25Cr- IMo, 2.25Cr-lMo-V and 9Cr-lMo low alloy steels were compiled and analysed to identify trends in creep-fatigue behaviour and life prediction for those steels. Effects of alloying elements such as chromium and vanadium were investigated and it was shown that with increase in chromium content the life improved, but with vanadium addition to a 2.25Cr-Mo steel the life was lowered. For the annealed condition, in which the material tensile properties were nearly half the value for the normalized and tempered condition, the 2.25Cr-lMo steel had higher life.

History

Year

1998

Thesis type

  • Masters thesis

Faculty/School

Department of Materials Engineering

Language

English

Disclaimer

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC