University of Wollongong
Browse

Biofabricated platforms for wound healing and skin regeneration

Download (5.37 MB)
thesis
posted on 2024-11-12, 13:01 authored by Lingzhi Kang
Skin is the largest organ of the our body, and wound healing is an issue of some critical concern. This study aims to fabricate scaffolds to facilitate wound healing. The major extracellular matrix (ECM) components, including collagen, elastin, glycosaminoglycans (GAGs, including hyaluronic acid), and GAG-like marine polysaccharides-ulvan, were explored here to mimic the compositional property of natural skin. Electrocompaction, which is a technique used to fabricate densely packed and highly ordered collagen structures, was utilized in this research to mimic the structural property of natural skin ECM. It is worth noting that, the work described in this thesis is the first example of utilizing the technique of electrocompaction in the area of skin regeneration. To test the feasibility of collagen electrocompaction and evaluate its ability to support skin regeneration, two types of skin scaffolds were fabricated and evaluated. In the first study, a collagen/sulfated xylorhamnoglycuronan (SXRGlu) scaffold was built. The fabricated electrocompacted collagen/SXRGlu matrices (ECLCU) were characterized in terms of micromorphology, mechanical property, water uptake, and degradability. The viability, proliferation, and morphology of human dermal fibroblasts (HDFs) cells on the fabricated structures were also evaluated. The results indicated that the electrocompaction process could promote structures that support HDFs proliferation, and the introduce of SXRGlu improves the water uptake ability and improves stability against collagenase degradation, also supporting fibroblast spreading. Therefore, all these results suggest that the electrocompacted collagen/SXRGlu scaffold is a potential candidate as a dermal substitute with enhanced biostability and biocompatibility.

History

Year

2021

Thesis type

  • Doctoral thesis

Faculty/School

Intelligent Polymer Research Institute

Language

English

Disclaimer

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC