An investigation into the impact of climate change on reproduction and recruitment in a model species with physical dormancy: a 'space-for-time' approach
posted on 2024-11-11, 21:45authored byAlice Rose Hudson
Predicting species response to future climatic change is a key focus of current plant ecology literature. In fire-prone ecosystems detailed case studies addressing how climatic warming will alter reproduction and recruitment dynamics in obligate seeding species are lacking, despite the importance of this plant group. I aim to address this knowledge gap, focusing on Acacia suaveolens, an obligate seeding species with physical seed dormancy (PY). In obligate seeders, fire kills the parental generation and triggers dormancy release in seeds from a seed bank. Population persistence therefore depends on successful recruitment post-fire. I used a ‘space-for-time’ (SFT) approach, where relationships between traits and climatic changes over geographic gradients (one altitudinal and one latitudinal) are identified and used to predict responses to future climates. By using four different experimental approaches, I also tested the assumptions of the SFT method.
History
Year
2016
Thesis type
Doctoral thesis
Faculty/School
School of Biological Sciences
Language
English
Disclaimer
Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.