University of Wollongong
Browse

3D printing PhycoTrix™ for wound healing

Download (3.38 MB)
thesis
posted on 2024-11-11, 19:18 authored by Jeremy Nicolas Dinoro
With the advent of additive manufacturing and its recent use in regenerative medicine, bioprinting has become a promising technology for tissue engineering applications. PhycoTrix™, a sulphated marine-derived polysaccharide, taken from the cell wall of a DNA barcoded green algal spp., (Chlorophyta), has a chemical structure similar to mammalian glycosaminoglycans found within the dermal skin layer extracellular matrix. This sustainable, under-utilised source of biomaterial was developed into a bioink for use in bioprinting. Specifically, a dual-network hydrogel was engineered through ionic and chemical means. This hydrogel was characterised following methacrylation through 1H NMR, FT-IR, and circular dichroism. The physical properties, printability, and crosslinking kinetics were all assessed through rheology and mechanical properties through micro-indentation. Preliminary cytocompatibility studies were evaluated using fibroblasts and adipose-derived stem cells. The results indicated relatively high cell binding affinity and proliferation compared to other alginate studies, suggesting this novel biomaterial could be useful for wound healing applications, such as wound dressings and matrices for tissue repair and regeneration.

History

Year

2016

Thesis type

  • Masters thesis

Faculty/School

Intelligent Polymer Research Institute

Language

English

Disclaimer

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC