University of Wollongong
Browse

File(s) not publicly available

4He dose- and track-averaged linear energy transfer: Monte Carlo algorithms and experimental verification

journal contribution
posted on 2024-11-17, 15:38 authored by S Fattori, G Petringa, S Agosteo, D Bortot, V Conte, G Cuttone, A Di Fini, F Farokhi, D Mazzucconi, L Pandola, I Petrović, A Ristić-Fira, A Rosenfeld, U Weber, G AP Cirrone
Objective. In the present hadrontherapy scenario, there is a growing interest in exploring the capabilities of different ion species other than protons and carbons. The possibility of using different ions paves the way for new radiotherapy approaches, such as the multi-ions treatment, where radiation could vary according to target volume, shape, depth and histologic characteristics of the tumor. For these reasons, in this paper, the study and understanding of biological-relevant quantities was extended for the case of 4He ion. Approach. Geant4 Monte Carlo based algorithms for dose- and track-averaged LET (Linear Energy Transfer) calculations, were validated for 4He ions and for the case of a mixed field characterised by the presence of secondary ions from both target and projectile fragmentation. The simulated dose and track averaged LETs were compared with the corresponding dose and frequency mean values of the lineal energy, y D ¯ and y ¯ F , derived from experimental microdosimetric spectra. Two microdosimetric experimental campaigns were carried out at the Italian eye proton therapy facility of the Laboratori Nazionali del Sud of Istituto Nazionale di Fisica Nucleare (INFN-LNS, Catania, I) using two different microdosimeters: the MicroPlus probe and the nano-TEPC (Tissue Equivalent Proportional Counter). Main results. A good agreement of L ¯ d Total and L ¯ t Total with y ¯ D and y ¯ T experimentally measured with both microdosimetric detectors MicroPlus and nano-TEPC in two configurations: full energy and modulated 4He ion beam, was found. Significance. The results of this study certify the use of a very effective tool for the precise calculation of LET, given by a Monte Carlo approach which has the advantage of allowing detailed simulation and tracking of nuclear interactions, even in complex clinical scenarios.

Funding

Ministerstvo Školství, Mládeže a Tělovýchovy (654 002 ENSAR2)

History

Journal title

Physics in Medicine and Biology

Volume

67

Issue

16

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC