University of Wollongong
Browse

File(s) not publicly available

β-Glucan from Lentinula edodes prevents cognitive impairments in high-fat diet-induced obese mice: involvement of colon-brain axis

journal contribution
posted on 2024-11-17, 15:27 authored by Wei Pan, Pengfei Jiang, Jinxiu Zhao, Hongli Shi, Peng Zhang, Xiaoying Yang, Joanna Biazik, Minmin Hu, Hui Hua, Xing Ge, Xu Feng Huang, Yinghua Yu
Background: Long-term high fat (HF) diet intake can cause neuroinflammation and cognitive decline through the gut-brain axis. (1, 3)/(1, 6)-β-glucan, an edible polysaccharide isolated from medical mushroom, Lentinula edodes (L. edodes), has the potential to remodel gut microbiota. However, the effects of L. edodes derived β-glucan against HF diet-induced neuroinflammation and cognitive decline remain unknown. This study aimed to evaluate the neuroprotective effect and mechanism of dietary L edodes β-glucan supplementation against the obesity-associated cognitive decline in mice fed by a HF diet. Methods: C57BL/6J male mice were fed with either a lab chow (LC), HF or HF with L. edodes β-glucan supplementation diets for 7 days (short-term) or 15 weeks (long-term). Cognitive behavior was examined; blood, cecum content, colon and brain were collected to evaluate metabolic parameters, endotoxin, gut microbiota, colon, and brain pathology. Results: We reported that short-term and long-term L. edodes β-glucan supplementation prevented the gut microbial composition shift induced by the HF diet. Long-term L. edodes β-glucan supplementation prevented the HF diet-induced recognition memory impairment assessed by behavioral tests (the temporal order memory, novel object recognition and Y-maze tests). In the prefrontal cortex and hippocampus, the β-glucan supplementation ameliorated the alteration of synaptic ultrastructure, neuroinflammation and brain-derived neurotrophic factor (BDNF) deficits induced by HF diet. Furthermore, the β-glucan supplementation increased the mucosal thickness, upregulated the expression of tight junction protein occludin, decreased the plasma LPS level, and inhibited the proinflammatory macrophage accumulation in the colon of mice fed by HF diet. Conclusions: This study revealed that L. edodes β-glucan prevents cognitive impairments induced by the HF diet, which may occur via colon-brain axis improvement. The finding suggested that dietary L. edodes β-glucan supplementation may be an effective nutritional strategy to prevent obesity-associated cognitive decline.

Funding

National Natural Science Foundation of China (KYCX20_2445)

History

Journal title

Journal of Translational Medicine

Volume

19

Issue

1

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC