University of Wollongong
Browse

Zero-Dimensional Interstitial Electron-Induced Spin–Orbit Coupling Dirac States in Sandwich Electride

journal contribution
posted on 2024-11-17, 14:45 authored by Weizhen Meng, Jiayu Jiang, Yalong Jiao, Fengxian Ma, Ying Yang, Zhenxiang Cheng, Xiaotian Wang
The development of inorganic electrides offers new possibilities for studying topological states due to the nonnuclear-binding properties displayed by interstitial electrons. Herein, a sandwich electride 2[CaCl]+:2e− is designed, featuring a tetragonal lattice structure, including two atomic lattice layers and one interstitial electron layer. The interstitial electrons form nonsymmorphic-symmetry-protected Dirac points (DPs) at the X and M points, which are robust against the spin–orbit coupling effect. DPs exhibit an approximately elliptical shape, characterized by a relatively high anisotropy, resulting from the interplay between the electron and atomic layers. In addition, 2[CaCl]+:2e− possesses a lower work function (WF) (3.43 eV), endowing it with robust electron-supplying characteristics. Due to the low WF and interstitial electrons, 2[CaCl]+:2e− loaded Ru shows outstanding catalytic performance for N2 cleavage. A potential research platform for exploring the formation of topological states and promoting nitrogen cracking in electrides is provided.

Funding

Natural Science Foundation of Hebei Province (A2022205027)

History

Journal title

Small Science

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC