It is well known that every positive integer can be represented uniquely as a sum of distinct, nonconsecutive Fibonacci numbers (see, e.g., Brown [1]. This representation is called the Zeckendorf representation of the positive integer. Other Zeckendorf-type representations where the Fibonacci numbers are not necessarily consecutive are possible. Brown [2] considers one where a maximal number of distinct Fibonacci numbers are used rather than a minimal number.
History
Citation
Bunder, M. W. (1992). Zeckendorf representations using negative fibonacci numbers. The Fibonacci Quarterly: a journal devoted to the study of integers with special properties, 30 (2), 111-115.
Journal title
The Fibonacci Quarterly: a journal devoted to the study of integers with special properties