We studied the molecular composition of muscle mitochondria to evaluate whether the contents of cytochromes or adenine nucleotide translocase (ANT) or phospholipid acyl compositions reflect differences in mitochondrial oxidative capacities. We isolated mitochondria from three vertebrates of similar size and preferred temperature, the rat (Rattus norvegicus), the cane toad (Bufo marinus) and the bearded dragon lizard (Pogona vitticeps). Mitochondrial oxidative capacities were higher in rats and cane toads than in bearded dragon, whether rates were expressed relative to protein, cytochromes or ANT. Inter-specific differences were least pronounced when rates were expressed relative to cytochrome A, a component of cytochrome C oxidase (CCO), or ANT. In mitochondria from rat and cane toad, cytochrome A was more abundant than C followed by B and then C1, while in bearded dragon mitochondria, the cytochromes were present in roughly equal levels. Analysis of correlations between mitochondrial oxidative capacities and macromolecular components revealed that cytochrome A explained at least half of the intra- and inter-specific variability in substrate oxidation rates. ANT levels were an excellent correlate of state 3 rates while phospholipid contents were correlated with state 4 rates. As the % poly-unsaturation and the % 20:4n-6 in mitochondrial phospholipids were equivalent in toads and rats, and exceeded the levels in lizards, they may contribute to the inter-specific differences in oxidative capacities. We suggest that the numbers of CCO and ANT together with the poly-unsaturation of phospholipids explain the higher oxidative capacities in muscle mitochondria from rats and cane toads.
History
Citation
Guderley, H., Turner, N., Else, P. & Hulbert, A. J. (2005). Why are some mitochondria more powerful than others: Insights from comparisons of muscle mitochondria from three terrestrial vertebrates. Comparative Biochemistry and Physiology B-Biochemistry and Molecular Biology, 142 172-180.
Journal title
Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology