University of Wollongong
Browse

WEAKLY NONLINEAR SURFACE WAVE PREDICTION USING A DATA-DRIVEN METHOD WITH THE HELP OF PHYSICAL UNDERSTANDING

journal contribution
posted on 2024-11-17, 16:37 authored by Jialun Chen, Wenhua Zhao, Ian A Milne, David Gunawan, Paul H Taylor
Accurate surface wave prediction can potentially improve the safety and efficiency of various offshore operations, such as heavy lifts and active control of wave energy converters and floating wind turbines. Prediction of surface waves, even if only for a few periods in advance, is of value for decision-making. This study aims to predict weakly nonlinear surface waves (up to the 2nd-order) in real-time using a data-driven model based on Artificial Neural Networks (ANN), where the application of physics is investigated to aid the development of a data-driven model. Based on numerically synthesized nonlinear wave records calculated using exact 2nd-order theory, ANN models were trained to separate the nonlinear bound components at an up-wave location, propagate the linear waves and reintroduce the nonlinear components as a correction to the prediction at a downwave location. The results show that the optimal approach is to predict each stage separately following the basic physical structure of weakly nonlinear water waves using a series of ANN rather than direct prediction in a single step using ANN. Further, the generalization of the models for different sea states and the impact of the 2nd-order bound waves on prediction accuracy is investigated.

Funding

Australian Research Council (IH200100009)

History

Journal title

Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE

Volume

1

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC