University of Wollongong
Browse

File(s) not publicly available

Variational Bayes approximation of factor stochastic volatility models

journal contribution
posted on 2024-11-17, 14:27 authored by David Gunawan, Robert Kohn, David Nott
Estimation and prediction in high dimensional multivariate factor stochastic volatility models is an important and active research area, because such models allow a parsimonious representation of multivariate stochastic volatility. Bayesian inference for factor stochastic volatility models is usually done by Markov chain Monte Carlo methods (often by particle Markov chain Monte Carlo methods), which are usually slow for high dimensional or long time series because of the large number of parameters and latent states involved. Our article makes two contributions. The first is to propose a fast and accurate variational Bayes methods to approximate the posterior distribution of the states and parameters in factor stochastic volatility models. The second is to extend this batch methodology to develop fast sequential variational updates for prediction as new observations arrive. The methods are applied to simulated and real datasets, and shown to produce good approximate inference and prediction compared to the latest particle Markov chain Monte Carlo approaches, but are much faster.

Funding

Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers (CE140100049)

History

Journal title

International Journal of Forecasting

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC