University of Wollongong
Browse

File(s) not publicly available

Unsupervised Learning Composite Network to Reduce Training Cost of Deep Learning Model for Colorectal Cancer Diagnosis

journal contribution
posted on 2024-11-17, 13:37 authored by Jirui Guo, Wuteng Cao, Bairun Nie, Qiyuan Qin
Deep learning facilitates complex medical data analysis and is increasingly being explored in colorectal cancer diagnostics. However, the training cost of the deep learning model limits its real-world medical utility. In this study, we present a composite network that combines deep learning and unsupervised K-means clustering algorithm (RK-net) for automatic processing of medical images. RK-net was more efficient in image refinement compared with manual screening and annotation. The training of a deep learning model for colorectal cancer diagnosis was accelerated by two times with utilization of RK-net-processed images. Better performance was observed in training loss and accuracy achievement as well. RK-net could be useful to refine medical images of the ever-expanding quantity and assist in subsequent construction of the artificial intelligence model.

Funding

Guangzhou Municipal Science and Technology Project (1010PY(2020)-25)

History

Journal title

IEEE Journal of Translational Engineering in Health and Medicine

Volume

11

Pagination

54-59

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC