University of Wollongong
Browse

Understanding the mechanisms of trace organic contaminant removal by high retention membrane bioreactors: a critical review

Download (1.11 MB)
journal contribution
posted on 2024-11-15, 08:46 authored by Muhammad Bilal Asif, Ashley Ansari, Shiao-Shing Chen, Long Nghiem, William PriceWilliam Price, Faisal HaiFaisal Hai
High retention membrane bioreactors (HR-MBR) combine a high retention membrane separation process such as membrane distillation, forward osmosis, or nanofiltration with a conventional activated sludge (CAS) process. Depending on the physicochemical properties of the trace organic contaminants (TrOCs) as well as the selected high retention membrane process, HR-MBR can achieve effective removal (80-99%) of a broad spectrum of TrOCs. An in-depth assessment of the available literature on HR-MBR performance suggests that compared to CAS and conventional MBRs (using micro- or ultra-filtration membrane), aqueous phase removal of TrOCs in HR-MBR is significantly better. Conceptually, longer retention time may significantly improve TrOC biodegradation, but there are insufficient data in the literature to evaluate the extent of TrOC biodegradation improvement by HR-MBR. The accumulation of hardly biodegradable TrOCs within the bioreactor of an HR-MBR system may complicate further treatment and beneficial reuse of sludge. In addition to TrOCs, accumulation of salts gradually increases the salinity in bioreactor and can adversely affect microbial activities. Strategies to mitigate these limitations are discussed. A qualitative framework is proposed to predict the contribution of the different key mechanisms of TrOC removal (i.e., membrane retention, biodegradation, and sorption) in HR-MBR.

History

Citation

Asif, M. B., Ansari, A. J., Chen, S., Nghiem, L. D., Price, W. E. & Hai, F. I. (2019). Understanding the mechanisms of trace organic contaminant removal by high retention membrane bioreactors: a critical review. Environmental Science and Pollution Research, 26 34085-34100.

Journal title

Environmental Science and Pollution Research

Volume

26

Issue

33

Pagination

34085-34100

Language

English

RIS ID

130727

Usage metrics

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC