University of Wollongong
Browse

Understanding electrolyte salt chemistry for advanced potassium storage performances of transition-metal sulfides

journal contribution
posted on 2024-11-17, 13:49 authored by Guangyao Ma, Yingying Wang, Jinmei Song, Kepeng Song, Nana Wang, Jian Yang, Yitai Qian
Molybdenum disulfide/carbon nanotubes assembled by ultrathin nanosheets are synthesized to illustrate the electrolyte salt chemistry via potassium bis-(fluorosulfonyl)imide (KFSI) versus potassium hexafluorophosphate (KPF6). Compared to the case of KPF6, the electrochemical performances using KFSI as the electrolyte salt are greatly improved: ~275 mAh g−1 after 15,000 cycles at 1 A g−1, or ~172 mAh g−1 even at 40 A g−1. These results represent one of the best performances for the reported anode materials. The enhanced performances could be attributed to the FSI-induced changes in the solvate structures, that is, a large solvation energy, a high lowest unoccupied molecular orbital, and a small bonding dissociation energy of S–F. In this case, a uniform and robust solid–electrolyte interphase (SEI) is produced, improving the mechanical properties and the interface integrity. Then, the uncontrollable fracture and repeated growth of SEI, which always lead to the dissolution of sulfur species and the blockage of charge transfer in the case of KPF6, are well inhibited. This similar enhancement works for other sulfides by KFSI, demonstrating the general importance of this electrolyte salt chemistry.

Funding

National Natural Science Foundation of China (2018JC023)

History

Journal title

Carbon Energy

Language

English

Usage metrics

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC