University of Wollongong
Browse

Understanding High-Rate K+-Solvent Co-Intercalation in Natural Graphite for Potassium-Ion Batteries

Download (1.69 MB)
journal contribution
posted on 2024-11-15, 21:50 authored by Lin Li, Luojia Liu, Zhe Hu, Yong Lu, Qiannan Liu, Song Jin, Qiu Zhang, Shuo Zhao, Shulei Chou
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Graphite shows great potential as an anode material for rechargeable metal-ion batteries because of its high abundance and low cost. However, the electrochemical performance of graphite anode materials for rechargeable potassium-ion batteries needs to be further improved. Reported herein is a natural graphite with superior rate performance and cycling stability obtained through a unique K+-solvent co-intercalation mechanism in a 1 m KCF3SO3 diethylene glycol dimethyl ether electrolyte. The co-intercalation mechanism was demonstrated by ex situ Fourier transform infrared spectroscopy and in situ X-ray diffraction. Moreover, the structure of the [K-solvent]+ complexes intercalated with the graphite and the conditions for reversible K+-solvent co-intercalation into graphite are proposed based on the experimental results and first-principles calculations. This work provides important insights into the design of natural graphite for high-performance rechargeable potassium-ion batteries.

History

Citation

Li, L., Liu, L., Hu, Z., Lu, Y., Liu, Q., Jin, S., Zhang, Q., Zhao, S. & Chou, S. (2020). Understanding High-Rate K+-Solvent Co-Intercalation in Natural Graphite for Potassium-Ion Batteries. Angewandte Chemie - International Edition,

Language

English

RIS ID

143587

Usage metrics

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC