University of Wollongong
Browse

Ultrahigh electrostrictive strain and its response to mechanical loading in Nd-doped PMN-PT ceramics

journal contribution
posted on 2024-11-17, 16:25 authored by Qinghu Guo, Xiangyu Meng, Dongxu Li, Zhonghua Yao, Huajun Sun, Hua Hao, Hanxing Liu, Shujun Zhang
Electrostrictive materials play an important role in the development of high precision actuators, due to the advantages of high resolution, low power dissipation and fast response time. However, the practical application of electrostrictive materials has been hindered by their limited displacement output. To address this, we conducted a study where we doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) ceramics with Nd2O3, aiming to significantly improve the electrostrictive effect by enhancing local structural heterogeneities that disrupt the formation of long-range ordered ferroelectric domains. We obtained an optimized electrostrictive strain of 0.231 % with negligible hysteresis at an electric field of 50 kV/cm in 4 %Nd-doped PMN-PT ceramic, surpassing the performance of state-of-the-art lead-based electrostrictive ceramics. Of particular significance is that a high electrostrictive coefficients M33 = 12.2 × 10−16 m2/V2, together with a high mechanical work density of 0.035 J/cm3 and a low power dissipation of 14 %, was achieved under a mechanical prestress of 50 MPa and an electric field of 10 kV/cm. Additionally, this material exhibits excellent fatigue resistance, with less than 3 % variation over 106 operation cycles. All these findings position 4 %Nd-doped PMN-PT ceramics as a promising candidate for high-performance electromechanical actuator applications.

Funding

National Natural Science Foundation of China (51790490)

History

Journal title

Acta Materialia

Volume

266

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC