University of Wollongong
Browse

Twisted Steinberg algebras

journal contribution
posted on 2024-11-17, 15:45 authored by Becky Armstrong, Lisa Orloff Clark, Kristin Courtney, Ying Fen Lin, Kathryn McCormick, Jacqui Ramagge
We introduce twisted Steinberg algebras over a commutative unital ring R. These generalise Steinberg algebras and are a purely algebraic analogue of Renault's twisted groupoid C*-algebras. In particular, for each ample Hausdorff groupoid G and each locally constant 2-cocycle σ on G taking values in the units R×, we study the algebra AR(G,σ) consisting of locally constant compactly supported R-valued functions on G, with convolution and involution “twisted” by σ. We also introduce a “discretised” analogue of a twist Σ over a Hausdorff étale groupoid G, and we show that there is a one-to-one correspondence between locally constant 2-cocycles on G and discrete twists over G admitting a continuous global section. Given a discrete twist Σ arising from a locally constant 2-cocycle σ on an ample Hausdorff groupoid G, we construct an associated twisted Steinberg algebra AR(G;Σ), and we show that it coincides with AR(G,σ−1). Given any discrete field Fd, we prove a graded uniqueness theorem for AFd(G,σ), and under the additional hypothesis that G is effective, we prove a Cuntz–Krieger uniqueness theorem and show that simplicity of AFd(G,σ) is equivalent to minimality of G.

Funding

Australian Research Council (DP170101821)

History

Journal title

Journal of Pure and Applied Algebra

Volume

226

Issue

3

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC