University of Wollongong
Browse

Tuning product selectivity and visible-light-driven activity in oxidative coupling of amines to imines: A case study of BiOIxCl1−x photocatalyst

journal contribution
posted on 2024-11-17, 16:23 authored by Supanan Anuchai, Doldet Tantraviwat, Andrew Nattestad, Jun Chen, Burapat Inceesungvorn
BiOCl has shown a promising photocatalytic activity in non-selective oxidation reactions, however its application in selective photocatalytic organic transformations is often limited by the strong oxidizing ability of photogenerated holes along with inefficient visible-light absorption. Herein, we showed that the poor visible-light-harvesting ability and low product selectivity of BiOCl in the selective oxidation of primary amines to corresponding imines can be alleviated by band energy level modification using a solid solution strategy. We combined an efficient visible light absorption performance of BiOI with a strong oxidizing ability of BiOCl to achieve BiOIxCl1−x solid solution catalysts with substantial improvements in imine yield. Among the BiOIxCl1−x catalysts, BiOI0.2Cl0.8 delivers the highest benzylamine conversion of ~84% with a selectivity of ~96% towards the imine, while pure BiOCl shows much lower conversion (~65%) and product selectivity (~81%). Such excellent performance could be attributed to electronic structure modifications induced by iodine atom incorporation into BiOCl structure as supported by UV–vis DRS, Mott-Schottky, and VB-XPS studies. Based on photoelectrochemical studies and material characterizations, band energy diagram of the BiOI0.2Cl0.8 is proposed and compared with that of pristine BiOCl and BiOI. Radical scavenging study, EPR spin trapping result, and Hammett plot suggest that the imine formation mechanism may occur via both 1O2- and O2•–-mediated pathways. This work highlights a rational catalyst design for which the benefits from each individual components are used to maximize photocatalytic performance toward the selective synthesis of value-added organic compounds.

Funding

Australian Research Council (B16F640001)

History

Journal title

Colloids and Surfaces A: Physicochemical and Engineering Aspects

Volume

629

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC