University of Wollongong
Browse

Toward Transparent and Accountable Privacy-Preserving Data Classification

journal contribution
posted on 2024-11-17, 15:10 authored by Yanqi Zhao, Yong Yu, Ruonan Chen, Yannan Li, Aikui Tian
Machine learning provides an effective approach to execute big data analysis. As a branch of machine learning, classification has been widely adopted in data processing. However, the sensitivity of data raises the concern of data privacy. How to balance data utility and data privacy is a challenging issue. Privacy-preserving data classification, which supports flexible and privacy-friendly access to datasets and data classification, enables users' data to be collected in an authenticated manner. However, the priva-cy-preserving data classification approach has a limitation in that the correctness of data classification cannot be guaranteed. As a consequence, it is possible for a malicious classifier to manipulate the classification result. To solve these problems, in this article, we propose a transparent and accountable privacy-preserving data classification framework, which involves a tracer to assert the behavior of the classifier and maintains the utility and privacy of data. Specifically, we take advantage of cryptography techniques to balance data privacy and data utility, and use blockchain to achieve transparency and accountability for the behavior of the classifier. To illustrate the practicability of this framework, we implement concrete cryptographic algorithms and develop a prototype system to evaluate and test its performance.

Funding

National Natural Science Foundation of China (61872229)

History

Journal title

IEEE Network

Volume

35

Issue

4

Pagination

184-189

Language

English

Usage metrics

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC