University of Wollongong
Browse

Three-Dimensional Networked Metal-Organic Frameworks with Conductive Polypyrrole Tubes for Flexible Supercapacitors

journal contribution
posted on 2024-11-16, 05:29 authored by Xingtao Xu, Jing Tang, Huayu Qian, Shujin Hou, Yoshio BandoYoshio Bando, Md Shahriar Hossain, Likun Pan, Yusuke Yamauchi
Metal-organic frameworks (MOFs) with high porosity and a regular porous structure have emerged as a promising electrode material for supercapacitors, but their poor electrical conductivity limits their utilization efficiency and capacitive performance. To increase the overall electrical conductivity as well as the efficiency of MOF particles, three-dimensional networked MOFs are developed via using preprepared conductive polypyrrole (PPy) tubes as the support for in situ growth of MOF particles. As a result, the highly conductive PPy tubes that run through the MOF particles not only increase the electron transfer between MOF particles and maintain the high effective porosity of the MOFs but also endow the MOFs with flexibility. Promoted by such elabora tely designed MOF-PPy networks, the specific capacitance of MOF particles has been increased from 99.2 F g -1 for pristine zeolitic imidazolate framework (ZIF)-67 to 597.6 F g -1 for ZIF-PPy networks, indicating the importance of the design of the ZIF-PPy continuous microstructure. Furthermore, a flexible supercapacitor device based on ZIF-PPy networks shows an outstanding areal capacitance of 225.8 mF cm -2 , which is far above other MOFs-based supercapacitors reported up to date, confirming the significance of in situ synthetic chemistry as well as the importance of hybrid materials on the nanoscale.

Funding

All-Metal Nanoporous Materials as Highly Active Electrocatalysts

Australian Research Council

Find out more...

History

Citation

Xu, X., Tang, J., Qian, H., Hou, S., Bando, Y., Hossain, M. A., Pan, L. & Yamauchi, Y. (2017). Three-Dimensional Networked Metal-Organic Frameworks with Conductive Polypyrrole Tubes for Flexible Supercapacitors. ACS Applied Materials and Interfaces, 9 (44), 38737-38744.

Journal title

ACS Applied Materials and Interfaces

Volume

9

Issue

44

Pagination

38737-38744

Language

English

RIS ID

117342

Usage metrics

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC