University of Wollongong
Browse

Theoretically manipulating quantum dots on two-dimensional TiO2 monolayer for effective visible light absorption

journal contribution
posted on 2024-11-16, 04:03 authored by Ting Liao, Ziqi Sun, Shi DouShi Dou
Low solar energy harvesting and conversion efficiency has become a major problem in solar energy science and engineering owing to the difficulty in capturing solar energy across the wide solar spectrum, especially in the visible light range. Inspired by the extraordinary properties of materials arising from decreased dimensions, in this study, we explore a nanocontact system formed by a two-dimensional (2D) TiO2 monolayer and II-VI semiconductor (CdX)13 (X = S, Se, and Te) nanocages for engineering the visible light absorption. The nanocontact system, via either Ti-X or Cd-O bond coupling mechanism, forms an ideal type II band alignment, where the stronger donor-acceptor coupling in the Ti-X contact system more efficiently relaxes the coupled geometry and helps it to couple to more electrons, therefore leading to an enhancement of the absorption peaks in the visible frequency range. On changing the element X in (CdX)13 from S to Se then Te, a red shift of the visible light absorption peaks accompanied by stimulating optical response of the whole nanocontact system was observed. Nanocontacting semiconductors comprising low-dimensional (CdX)13 nanocage@TiO2 monolayer systems, which promote charge separation and optical absorption in the visible range that arise from the effects of adsorbent nature, decreasing size, and efficient interfacial coupling mechanism, are therefore promising photovoltaic and photocatalytic materials.

Funding

Bio-inspired multifunctional inorganic nanostructured interfaces

Australian Research Council

Find out more...

Multifunctional 2D materials for sustainable energy applications

Australian Research Council

Find out more...

History

Citation

Liao, T., Sun, Z. & Dou, S. Xue. (2017). Theoretically manipulating quantum dots on two-dimensional TiO2 monolayer for effective visible light absorption. ACS Applied Materials and Interfaces, 9 (9), 8255-8262.

Journal title

ACS Applied Materials and Interfaces

Volume

9

Issue

9

Pagination

8255-8262

Language

English

RIS ID

113000

Usage metrics

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC